These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37798781)

  • 21. JOINTLY: interpretable joint clustering of single-cell transcriptomes.
    Møller AF; Madsen JGS
    Nat Commun; 2023 Dec; 14(1):8473. PubMed ID: 38123569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FIRM: Flexible integration of single-cell RNA-sequencing data for large-scale multi-tissue cell atlas datasets.
    Ming J; Lin Z; Zhao J; Wan X; ; Yang C; Wu AR
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35561293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visualization of Single Cell RNA-Seq Data Using t-SNE in R.
    Zhou B; Jin W
    Methods Mol Biol; 2020; 2117():159-167. PubMed ID: 31960377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-cell data clustering based on sparse optimization and low-rank matrix factorization.
    Hu Y; Li B; Chen F; Qu K
    G3 (Bethesda); 2021 Jun; 11(6):. PubMed ID: 33787873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PieParty: visualizing cells from scRNA-seq data as pie charts.
    Kurtenbach S; Dollar JJ; Cruz AM; Durante MA; Decatur CL; Harbour JW
    Life Sci Alliance; 2021 May; 4(5):. PubMed ID: 33674364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interpretable modeling of time-resolved single-cell gene-protein expression with CrossmodalNet.
    Yang Y; Lin YT; Li G; Zhong Y; Xu Q; Cai JJ
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37798250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single cell RNA-seq data clustering using TF-IDF based methods.
    Moussa M; Măndoiu II
    BMC Genomics; 2018 Aug; 19(Suppl 6):569. PubMed ID: 30367575
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data.
    DeTomaso D; Yosef N
    BMC Bioinformatics; 2016 Aug; 17(1):315. PubMed ID: 27553427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study.
    Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes.
    Wang T; Johnson TS; Shao W; Lu Z; Helm BR; Zhang J; Huang K
    Genome Biol; 2019 Aug; 20(1):165. PubMed ID: 31405383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-cell RNA sequencing data analysis based on non-uniform ε-neighborhood network.
    Jia J; Chen L
    Bioinformatics; 2022 Apr; 38(9):2459-2465. PubMed ID: 35188181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species.
    Stein-O'Brien GL; Clark BS; Sherman T; Zibetti C; Hu Q; Sealfon R; Liu S; Qian J; Colantuoni C; Blackshaw S; Goff LA; Fertig EJ
    Cell Syst; 2019 May; 8(5):395-411.e8. PubMed ID: 31121116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization.
    Yan X; Zheng R; Chen J; Li M
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37584660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TAS-Seq is a robust and sensitive amplification method for bead-based scRNA-seq.
    Shichino S; Ueha S; Hashimoto S; Ogawa T; Aoki H; Wu B; Chen CY; Kitabatake M; Ouji-Sageshima N; Sawabata N; Kawaguchi T; Okayama T; Sugihara E; Hontsu S; Ito T; Iwata Y; Wada T; Ikeo K; Sato TA; Matsushima K
    Commun Biol; 2022 Jun; 5(1):602. PubMed ID: 35760847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.