BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3779885)

  • 1. Cyclic voltammetry of phenazines and quinoxalines including mono- and di-N-oxides. Relation to structure and antimicrobial activity.
    Crawford PW; Scamehorn RG; Hollstein U; Ryan MD; Kovacic P
    Chem Biol Interact; 1986 Oct; 60(1):67-84. PubMed ID: 3779885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial effects of iodinin, 2-methylquinoxaline di-n-oxide and 2,6-dimethoxybenzoquinone in vitro.
    WIEDLING S
    Acta Pathol Microbiol Scand; 1945; 22(4):379-91. PubMed ID: 21021830
    [No Abstract]   [Full Text] [Related]  

  • 3. Charge transfer in the mechanism of drug action involving quinoxaline di-N-oxides.
    Ryan MD; Scamehorn RG; Kovacic P
    J Pharm Sci; 1985 Apr; 74(4):492-5. PubMed ID: 3999016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrimido[1,2-a]quinoxaline 6-oxide and phenazine 5,10-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi.
    Lavaggi ML; Aguirre G; Boiani L; Orelli L; García B; Cerecetto H; González M
    Eur J Med Chem; 2008 Aug; 43(8):1737-41. PubMed ID: 18068272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total synthesis and antileukemic evaluations of the phenazine 5,10-dioxide natural products iodinin, myxin and their derivatives.
    Viktorsson EÖ; Melling Grøthe B; Aesoy R; Sabir M; Snellingen S; Prandina A; Høgmoen Åstrand OA; Bonge-Hansen T; Døskeland SO; Herfindal L; Rongved P
    Bioorg Med Chem; 2017 Apr; 25(7):2285-2293. PubMed ID: 28284865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quinoxaline-1,4-dioxide derivatives inhibitory action in melanoma and brain tumor cells.
    Silva L; Coelho P; Soares R; Prudêncio C; Vieira M
    Future Med Chem; 2019 Apr; 11(7):645-657. PubMed ID: 30964331
    [No Abstract]   [Full Text] [Related]  

  • 7. Mutagenicity of quindoxin, its metabolites, and two substituted quinoxaline-di-N-oxides.
    Beutin L; Preller E; Kowalski B
    Antimicrob Agents Chemother; 1981 Sep; 20(3):336-43. PubMed ID: 7030199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quinoxaline 1,4-di-N-Oxide Derivatives: Are They Unselective or Selective Inhibitors?
    Rivera G
    Mini Rev Med Chem; 2022; 22(1):15-25. PubMed ID: 33573542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quinoxaline and quinoxaline-1,4-di-N-oxides: An emerging class of antimycobacterials.
    Keri RS; Pandule SS; Budagumpi S; Nagaraja BM
    Arch Pharm (Weinheim); 2018 May; 351(5):e1700325. PubMed ID: 29611626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial activity of quinoxaline 1,4-dioxide with 2- and 3-substituted derivatives.
    Vieira M; Pinheiro C; Fernandes R; Noronha JP; Prudêncio C
    Microbiol Res; 2014 Apr; 169(4):287-93. PubMed ID: 23928379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topical antimicrobial activity of 6-methoxy-1-phenazinol 5,10-dioxide, cupric complex.
    Maestrone G; Darker R; Hemrick F; Mitrovic M
    Am J Vet Res; 1972 Jan; 33(1):185-93. PubMed ID: 4621697
    [No Abstract]   [Full Text] [Related]  

  • 12. Voltammetric Study of Some 3-Aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide Derivatives with Anti-Tumor Activities.
    Miller EM; Xia Q; Cella ME; Nenninger AW; Mruzik MN; Brillos-Monia KA; Hu YZ; Sheng R; Ragain CM; Crawford PW
    Molecules; 2017 Aug; 22(9):. PubMed ID: 28858261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of iodinin solubility by encapsulation into cyclodextrin nanoparticles.
    Prandina A; Herfindal L; Radix S; Rongved P; Døskeland SO; Le Borgne M; Perret F
    J Enzyme Inhib Med Chem; 2018 Dec; 33(1):370-375. PubMed ID: 29336193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and Structural Analysis of Phenazine O-Methyltransferase LaPhzM from Lysobacter antibioticus OH13 and One-Pot Enzymatic Synthesis of the Antibiotic Myxin.
    Jiang J; Guiza Beltran D; Schacht A; Wright S; Zhang L; Du L
    ACS Chem Biol; 2018 Apr; 13(4):1003-1012. PubMed ID: 29510028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro antimicrobial activities of animal-used quinoxaline 1,4-di-N-oxides against mycobacteria, mycoplasma and fungi.
    Zhao Y; Cheng G; Hao H; Pan Y; Liu Z; Dai M; Yuan Z
    BMC Vet Res; 2016 Sep; 12(1):186. PubMed ID: 27600955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of phenazines. II. Incorporation of (6-14C)-D-shikimic acid into phenazine-1-carboxylic acid and iodinin.
    Hollstein U; McCamey DA
    J Org Chem; 1973 Sep; 38(19):3415-7. PubMed ID: 4733458
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis and antibacterial activity of 1-hydroxy-1-methyl-1,3-dihydrofuro[3,4-b]quinoxaline 4,9-dioxide and related compounds.
    Dirlam JP; Czuba LJ; Dominy BW; James RB; Pezzullo RM; Presslitz JE; Windisch WW
    J Med Chem; 1979 Sep; 22(9):1118-21. PubMed ID: 490559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as anti-Mycobacterium tuberculosis agents.
    Jaso A; Zarranz B; Aldana I; Monge A
    J Med Chem; 2005 Mar; 48(6):2019-25. PubMed ID: 15771444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biosynthesis of 1,6-phenazinediol 5,10-dioxide (Iodinin) by Brevibacterium iodinum.
    Podojil M; Gerber NN
    Biochemistry; 1967 Sep; 6(9):2701-5. PubMed ID: 6055186
    [No Abstract]   [Full Text] [Related]  

  • 20. Redox-activated, hypoxia-selective DNA cleavage by quinoxaline 1,4-di-N-oxide.
    Ganley B; Chowdhury G; Bhansali J; Daniels JS; Gates KS
    Bioorg Med Chem; 2001 Sep; 9(9):2395-401. PubMed ID: 11553481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.