These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37798957)

  • 1. Diffuse domain approach for flexible needle insertion and relaxation.
    Jerg KI; Boggaram Naveen L; Kanschat G; Okonkwo ECN; Hesser JW
    Int J Numer Method Biomed Eng; 2024 Jan; 40(1):e3782. PubMed ID: 37798957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffuse domain method for needle insertion simulations.
    Jerg KI; Austermühl RP; Roth K; Große Sundrup J; Kanschat G; Hesser JW; Wittmayer L
    Int J Numer Method Biomed Eng; 2020 Sep; 36(9):e3377. PubMed ID: 32562345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on modeling the deflection of surgical needle during insertion into multilayer tissues.
    Al-Safadi S; Hutapea P
    J Mech Behav Biomed Mater; 2023 Oct; 146():106071. PubMed ID: 37573763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a dynamic model for bevel-tip flexible needle insertion into soft tissues.
    Haddadi A; Hashtrudi-Zaad K
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7478-82. PubMed ID: 22256068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Needle-tissue interaction model based needle path planning method.
    Lei Y; Du S; Li M; Xu T; Hu Y; Wang Z
    Comput Methods Programs Biomed; 2024 Jan; 243():107858. PubMed ID: 37879198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation and experimental studies in needle-tissue interactions.
    Konh B; Honarvar M; Darvish K; Hutapea P
    J Clin Monit Comput; 2017 Aug; 31(4):861-872. PubMed ID: 27430491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of biopsy bevel-tipped needle insertion into soft-gel.
    Jushiddi MG; Mulvihill JJE; Chovan D; Mani A; Shanahan C; Silien C; Md Tofail SA; Tiernan P
    Comput Biol Med; 2019 Aug; 111():103337. PubMed ID: 31279981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational multilayer model to simulate hollow needle insertion into biological porcine liver tissue.
    Jushiddi MG; Mani A; Silien C; Tofail SAM; Tiernan P; Mulvihill JJE
    Acta Biomater; 2021 Dec; 136():389-401. PubMed ID: 34624554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bevel angle study of flexible hollow needle insertion into biological mimetic soft-gel: Simulation and experimental validation.
    Jushiddi MG; Cahalane RM; Byrne M; Mani A; Silien C; Tofail SAM; Mulvihill JJE; Tiernan P
    J Mech Behav Biomed Mater; 2020 Nov; 111():103896. PubMed ID: 32791488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of different insertion methods on reducing needle deflection.
    Abolhassani N; Patel R; Ayazi F
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():491-4. PubMed ID: 18001996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model to predict deflection of bevel-tipped active needle advancing in soft tissue.
    Datla NV; Konh B; Honarvar M; Podder TK; Dicker AP; Yu Y; Hutapea P
    Med Eng Phys; 2014 Mar; 36(3):285-93. PubMed ID: 24296105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust path planning for flexible needle insertion using Markov decision processes.
    Tan X; Yu P; Lim KB; Chui CK
    Int J Comput Assist Radiol Surg; 2018 Sep; 13(9):1439-1451. PubMed ID: 29752637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path Replanning for Orientation-Constrained Needle Steering.
    Pinzi M; Watts T; Secoli R; Galvan S; Baena FRY
    IEEE Trans Biomed Eng; 2021 May; 68(5):1459-1466. PubMed ID: 33606622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A velocity-dependent model for needle insertion in soft tissue.
    Crouch JR; Schneider CM; Wainer J; Okamura AM
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):624-32. PubMed ID: 16686012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation and experiment of soft-tissue deformation in prostate brachytherapy.
    Liang D; Jiang S; Yang Z; Wang X
    Proc Inst Mech Eng H; 2016 Jun; 230(6):532-44. PubMed ID: 27129384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel material point method (MPM) based needle-tissue interaction model.
    Li M; Lei Y; Gao D; Hu Y; Zhang X
    Comput Methods Biomech Biomed Engin; 2021 Sep; 24(12):1393-1407. PubMed ID: 33688750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of needle-tissue interaction using ultrasound-based motion estimation.
    Dehghan E; Wen X; Zahiri-Azar R; Marchal M; Salcudean SE
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):709-16. PubMed ID: 18051121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study of needle-tissue interaction forces: effect of needle geometries, insertion methods and tissue characteristics.
    Jiang S; Li P; Yu Y; Liu J; Yang Z
    J Biomech; 2014 Oct; 47(13):3344-53. PubMed ID: 25169657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compliance boundary conditions for simulating deformations in a limited target region.
    Ozkan E; Goksel O
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():929-32. PubMed ID: 26736415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures.
    Hungr N; Long JA; Beix V; Troccaz J
    Med Phys; 2012 Apr; 39(4):2031-41. PubMed ID: 22482624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.