These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 37799328)

  • 1. Efficient shRNA-based knockdown of multiple target genes for cell therapy using a chimeric miRNA cluster platform.
    Rossi M; Steklov M; Huberty F; Nguyen T; Marijsse J; Jacques-Hespel C; Najm P; Lonez C; Breman E
    Mol Ther Nucleic Acids; 2023 Dec; 34():102038. PubMed ID: 37799328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the Elements of Short Hairpin RNAs in Developing shRNA-Containing CAR T Cells.
    Urak R; Gittins B; Soemardy C; Grepo N; Goldberg L; Maker M; Shevchenko G; Davis A; Li S; Scott T; Morris KV; Forman SJ; Wang X
    Cancers (Basel); 2023 May; 15(10):. PubMed ID: 37345185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-Expression of miR155 or LSD1 shRNA Increases the Anti-Tumor Functions of CD19 CAR-T Cells.
    Zhang J; Zhu J; Zheng G; Wang Q; Li X; Feng Y; Shang F; He S; Jiang Q; Shi B; Wang D; Cao Z; Wang J
    Front Immunol; 2021; 12():811364. PubMed ID: 35046962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing.
    Dimitri A; Herbst F; Fraietta JA
    Mol Cancer; 2022 Mar; 21(1):78. PubMed ID: 35303871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Human CRISPR-Engineered CAR-T Cells.
    Agarwal S; Wellhausen N; Levine BL; June CH
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33779622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunotherapy to get on point with base editing.
    Harbottle JA
    Drug Discov Today; 2021 Oct; 26(10):2350-2357. PubMed ID: 33857616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency of genetic modification using CRISPR/Cpf1 system for engineered CAR-T cell therapy.
    Ding R; Chao CC; Gao Q
    Methods Cell Biol; 2022; 167():1-14. PubMed ID: 35152989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells.
    Glaser V; Flugel C; Kath J; Du W; Drosdek V; Franke C; Stein M; Pruß A; Schmueck-Henneresse M; Volk HD; Reinke P; Wagner DL
    Genome Biol; 2023 Apr; 24(1):89. PubMed ID: 37095570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Editing Technologies in Adoptive T Cell Immunotherapy for Cancer.
    Singh N; Shi J; June CH; Ruella M
    Curr Hematol Malig Rep; 2017 Dec; 12(6):522-529. PubMed ID: 29039115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences.
    Seyhan AA
    Mol Biosyst; 2016 Jan; 12(1):295-312. PubMed ID: 26617199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment.
    Mollanoori H; Shahraki H; Rahmati Y; Teimourian S
    Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Better by design: What to expect from novel CAR-engineered cell therapies?
    Luginbuehl V; Abraham E; Kovar K; Flaaten R; Müller AMS
    Biotechnol Adv; 2022 Sep; 58():107917. PubMed ID: 35149146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 genome editing: Fueling the revolution in cancer immunotherapy.
    Liu X; Zhao Y
    Curr Res Transl Med; 2018 May; 66(2):39-42. PubMed ID: 29691200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex Genome-Edited T-cell Manufacturing Platform for "Off-the-Shelf" Adoptive T-cell Immunotherapies.
    Poirot L; Philip B; Schiffer-Mannioui C; Le Clerre D; Chion-Sotinel I; Derniame S; Potrel P; Bas C; Lemaire L; Galetto R; Lebuhotel C; Eyquem J; Cheung GW; Duclert A; Gouble A; Arnould S; Peggs K; Pule M; Scharenberg AM; Smith J
    Cancer Res; 2015 Sep; 75(18):3853-64. PubMed ID: 26183927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quick and efficient approach for gene silencing by using triple putative microRNA-based short hairpin RNAs.
    Shan ZX; Lin QX; Yang M; Deng CY; Kuang SJ; Zhou ZL; Xiao DZ; Liu XY; Lin SG; Yu XY
    Mol Cell Biochem; 2009 Mar; 323(1-2):81-9. PubMed ID: 19037714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine and Predictable Tuning of TALEN Gene Editing Targeting for Improved T Cell Adoptive Immunotherapy.
    Gautron AS; Juillerat A; Guyot V; Filhol JM; Dessez E; Duclert A; Duchateau P; Poirot L
    Mol Ther Nucleic Acids; 2017 Dec; 9():312-321. PubMed ID: 29246309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explorations of CRISPR/Cas9 for improving the long-term efficacy of universal CAR-T cells in tumor immunotherapy.
    Naeem M; Hazafa A; Bano N; Ali R; Farooq M; Razak SIA; Lee TY; Devaraj S
    Life Sci; 2023 Mar; 316():121409. PubMed ID: 36681183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy.
    Gong Y; Klein Wolterink RGJ; Wang J; Bos GMJ; Germeraad WTV
    J Hematol Oncol; 2021 May; 14(1):73. PubMed ID: 33933160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle-Based Chimeric Antigen Receptor Therapy for Cancer Immunotherapy.
    Shin S; Lee P; Han J; Kim SN; Lim J; Park DH; Paik T; Min J; Park CG; Park W
    Tissue Eng Regen Med; 2023 Jun; 20(3):371-387. PubMed ID: 36867402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Past, Present, and Future of Non-Viral CAR T Cells.
    Moretti A; Ponzo M; Nicolette CA; Tcherepanova IY; Biondi A; Magnani CF
    Front Immunol; 2022; 13():867013. PubMed ID: 35757746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.