These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37799330)

  • 1. Structure-Based Inverse Reinforcement Learning for Quantification of Biological Knowledge.
    Ravari A; Ghoreishi SF; Imani M
    2023 IEEE Conf Artif Intell (2023); 2023 Jun; 2023():282-284. PubMed ID: 37799330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal Recursive Expert-Enabled Inference in Regulatory Networks.
    Ravari A; Ghoreishi SF; Imani M
    IEEE Control Syst Lett; 2023; 7():1027-1032. PubMed ID: 36644010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforcement Learning Data-Acquiring for Causal Inference of Regulatory Networks.
    Alali M; Imani M
    Proc Am Control Conf; 2023; 2023():3957-3964. PubMed ID: 37521901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable Inverse Reinforcement Learning Through Multifidelity Bayesian Optimization.
    Imani M; Ghoreishi SF
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):4125-4132. PubMed ID: 33481721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AGRN: accurate gene regulatory network inference using ensemble machine learning methods.
    Alawad DM; Katebi A; Kabir MWU; Hoque MT
    Bioinform Adv; 2023; 3(1):vbad032. PubMed ID: 37038446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Gene Regulatory Networks Using Bayesian Inverse Reinforcement Learning.
    Imani M; Braga-Neto UM
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1250-1261. PubMed ID: 29993697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks.
    Tian Y; Zhang B; Hoffman EP; Clarke R; Zhang Z; Shih IeM; Xuan J; Herrington DM; Wang Y
    BMC Syst Biol; 2014 Jul; 8():87. PubMed ID: 25055984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational methods for discovering gene networks from expression data.
    Lee WP; Tzou WS
    Brief Bioinform; 2009 Jul; 10(4):408-23. PubMed ID: 19505889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kernelized multiview signed graph learning for single-cell RNA sequencing data.
    Karaaslanli A; Saha S; Maiti T; Aviyente S
    BMC Bioinformatics; 2023 Apr; 24(1):127. PubMed ID: 37016281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring Gene Regulatory Networks From Single-Cell Transcriptomic Data Using Bidirectional RNN.
    Gan Y; Hu X; Zou G; Yan C; Xu G
    Front Oncol; 2022; 12():899825. PubMed ID: 35692809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks.
    Chen CK
    Interdiscip Sci; 2018 Dec; 10(4):823-835. PubMed ID: 28748400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep inverse reinforcement learning for structural evolution of small molecules.
    Agyemang B; Wu WP; Addo D; Kpiebaareh MY; Nanor E; Roland Haruna C
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33348357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting transfer learning for the reconstruction of the human gene regulatory network.
    Mignone P; Pio G; D'Elia D; Ceci M
    Bioinformatics; 2020 Mar; 36(5):1553-1561. PubMed ID: 31608946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PaCAR: COVID-19 Pandemic Control Decision Making via Large-Scale Agent-Based Modeling and Deep Reinforcement Learning.
    Guo X; Chen P; Liang S; Jiao Z; Li L; Yan J; Huang Y; Liu Y; Fan W
    Med Decis Making; 2022 Nov; 42(8):1064-1077. PubMed ID: 35775610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging Machine Learning Techniques for Modelling Cellular Complex Systems in Alzheimer's Disease.
    Vrahatis AG; Vlamos P; Avramouli A; Exarchos T; Gonidi M
    Adv Exp Med Biol; 2021; 1338():199-208. PubMed ID: 34973026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Employing decomposable partially observable Markov decision processes to control gene regulatory networks.
    Erdogdu U; Polat F; Alhajj R
    Artif Intell Med; 2017 Nov; 83():14-34. PubMed ID: 28733120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrent neural network based hybrid model for reconstructing gene regulatory network.
    Raza K; Alam M
    Comput Biol Chem; 2016 Oct; 64():322-334. PubMed ID: 27570069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in machine learning methods for predicting LncRNA and disease associations.
    Tan J; Li X; Zhang L; Du Z
    Front Cell Infect Microbiol; 2022; 12():1071972. PubMed ID: 36530425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Regulatory Network-Classifier: Gene Regulatory Network-Based Classifier and Its Applications to Gastric Cancer Drug (5-Fluorouracil) Marker Identification.
    Park H; Imoto S; Miyano S
    J Comput Biol; 2023 Feb; 30(2):223-243. PubMed ID: 36450117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.