These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37799382)

  • 1. Macrophage-camouflaged epigenetic nanoinducers enhance chemoimmunotherapy in triple negative breast cancer.
    Gao T; Sang X; Huang X; Gu P; Liu J; Liu Y; Zhang N
    Acta Pharm Sin B; 2023 Oct; 13(10):4305-4317. PubMed ID: 37799382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dual-Targeting Liposome Enhances Triple-Negative Breast Cancer Chemoimmunotherapy through Inducing Immunogenic Cell Death and Inhibiting STAT3 Activation.
    Luo K; Yang L; Yan C; Zhao Y; Li Q; Liu X; Xie L; Sun Q; Li X
    Small; 2023 Oct; 19(40):e2302834. PubMed ID: 37264710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doxorubicin-Loaded Platelet Decoys for Enhanced Chemoimmunotherapy Against Triple-Negative Breast Cancer in Mice Model.
    Dong H; Gao M; Lu L; Gui R; Fu Y
    Int J Nanomedicine; 2023; 18():3577-3593. PubMed ID: 37409026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Dose Paclitaxel and its Combination with CSF1R Inhibitor in Polymeric Micelles for Chemoimmunotherapy of Triple Negative Breast Cancer.
    Lim C; Hwang D; Yazdimamaghani M; Atkins HM; Hyun H; Shin Y; Ramsey JD; Rädler PD; Mott KR; Perou CM; Sokolsky-Papkov M; Kabanov AV
    Nano Today; 2023 Aug; 51():. PubMed ID: 37484164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-Delivery Nanomicelles for Potentiating TNBC Immunotherapy by Synergetically Reshaping CAFs-Mediated Tumor Stroma and Reprogramming Immunosuppressive Microenvironment.
    Zhang Y; Han X; Wang K; Liu D; Ding X; Hu Z; Wang J
    Int J Nanomedicine; 2023; 18():4329-4346. PubMed ID: 37545872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanodroplet-enhanced sonodynamic therapy potentiates immune checkpoint blockade for systemic suppression of triple-negative breast cancer.
    Wu W; Xu M; Qiao B; Huang T; Guo H; Zhang N; Zhou L; Li M; Tan Y; Zhang M; Xie X; Shuai X; Zhang C
    Acta Biomater; 2023 Mar; 158():547-559. PubMed ID: 36539109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite.
    Liao WS; Ho Y; Lin YW; Naveen Raj E; Liu KK; Chen C; Zhou XZ; Lu KP; Chao JI
    Acta Biomater; 2019 Mar; 86():395-405. PubMed ID: 30660004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paclitaxel/sunitinib-loaded micelles promote an antitumor response in vitro through synergistic immunogenic cell death for triple-negative breast cancer.
    Qin T; Xu X; Zhang Z; Li J; You X; Guo H; Sun H; Liu M; Dai Z; Zhu H
    Nanotechnology; 2020 Sep; 31(36):365101. PubMed ID: 32434167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-delivery of gemcitabine and paclitaxel plus NanoCpG empowers chemoimmunotherapy of postoperative "cold" triple-negative breast cancer.
    Guo B; Qu Y; Sun Y; Zhao S; Yuan J; Zhang P; Zhong Z; Meng F
    Bioact Mater; 2023 Jul; 25():61-72. PubMed ID: 36733927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy.
    Haney MJ; Zhao Y; Jin YS; Li SM; Bago JR; Klyachko NL; Kabanov AV; Batrakova EV
    J Neuroimmune Pharmacol; 2020 Sep; 15(3):487-500. PubMed ID: 31722094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Biomimetic Nanogel System Restores Macrophage Phagocytosis for Magnetic Resonance Imaging-Guided Synergistic Chemoimmunotherapy of Breast Cancer.
    Li L; Gao Y; Zhang Y; Yang R; Ouyang Z; Guo R; Yu H; Shi X; Cao X
    Adv Healthc Mater; 2023 Oct; 12(26):e2300967. PubMed ID: 37470683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment with decitabine induces the expression of stemness markers, PD-L1 and NY-ESO-1 in colorectal cancer: potential for combined chemoimmunotherapy.
    Taib N; Merhi M; Inchakalody V; Mestiri S; Hydrose S; Makni-Maalej K; Raza A; Sahir F; Azizi F; Nizamuddin PB; Fernandes Q; Yoosuf ZSKM; Almoghrabi S; Al-Zaidan L; Shablak A; Uddin S; Maccalli C; Al Homsi MU; Dermime S
    J Transl Med; 2023 Mar; 21(1):235. PubMed ID: 37004094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RAD6 inhibition enhances paclitaxel sensitivity of triple negative breast cancer cells by aggravating mitotic spindle damage.
    Haynes BM; Cunningham K; Shekhar MPV
    BMC Cancer; 2022 Oct; 22(1):1073. PubMed ID: 36258187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic impact of Nintedanib with paclitaxel and/or a PD-L1 antibody in preclinical models of orthotopic primary or metastatic triple negative breast cancer.
    Reguera-Nuñez E; Xu P; Chow A; Man S; Hilberg F; Kerbel RS
    J Exp Clin Cancer Res; 2019 Jan; 38(1):16. PubMed ID: 30635009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in T-cell subsets and clonal repertoire during chemoimmunotherapy with pembrolizumab and paclitaxel or capecitabine for metastatic triple-negative breast cancer.
    Chun B; Pucilowska J; Chang S; Kim I; Nikitin B; Koguchi Y; Redmond WL; Bernard B; Rajamanickam V; Polaske N; Fields PA; Conrad V; Schmidt M; Urba WJ; Conlin AK; McArthur HL; Page DB
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35086949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Anti-Tumor Effect of Toosendanin and Paclitaxel on Triple-Negative Breast Cancer via Regulating ADORA2A-EMT Related Signaling.
    Zhang J; Xu HX; Wu YL; Cho WCS; Xian YF; Lin ZX
    Adv Biol (Weinh); 2023 Aug; 7(8):e2300062. PubMed ID: 37401656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of Chidamide-Mediated Epigenetic Modulation with Immunotherapy: Boosting Tumor Immunogenicity and Response to PD-1/PD-L1 Blockade.
    Tu K; Yu Y; Wang Y; Yang T; Hu Q; Qin X; Tu J; Yang C; Kong L; Zhang Z
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39003-39017. PubMed ID: 34433253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy.
    Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H
    Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional Nanoplatform-Mediated Chemo-Photothermal Therapy Combines Immunogenic Cell Death with Checkpoint Blockade to Combat Triple-Negative Breast Cancer and Distant Metastasis.
    Zhu H; Yang K; Yao H; Chen X; Yan S; He Y; Cao Y; Luo J; Wang D
    Int J Nanomedicine; 2023; 18():3109-3124. PubMed ID: 37323948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asynchronous blockade of PD-L1 and CD155 by polymeric nanoparticles inhibits triple-negative breast cancer progression and metastasis.
    Chen C; Guo Q; Fu H; Yu J; Wang L; Sun Y; Zhang J; Duan Y
    Biomaterials; 2021 Aug; 275():120988. PubMed ID: 34186238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.