BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37800369)

  • 1. Challenges of accounting nitrous oxide emissions from agricultural crop residues.
    Olesen JE; Rees RM; Recous S; Bleken MA; Abalos D; Ahuja I; Butterbach-Bahl K; Carozzi M; De Notaris C; Ernfors M; Haas E; Hansen S; Janz B; Lashermes G; Massad RS; Petersen SO; Rittl TF; Scheer C; Smith KE; Thiébeau P; Taghizadeh-Toosi A; Thorman RE; Topp CFE
    Glob Chang Biol; 2023 Dec; 29(24):6846-6855. PubMed ID: 37800369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic fertility inputs synergistically increase denitrification-derived nitrous oxide emissions in agroecosystems.
    Saha D; Kaye JP; Bhowmik A; Bruns MA; Wallace JM; Kemanian AR
    Ecol Appl; 2021 Oct; 31(7):e02403. PubMed ID: 34231260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil nitrous oxide emissions following crop residue addition: a meta-analysis.
    Chen H; Li X; Hu F; Shi W
    Glob Chang Biol; 2013 Oct; 19(10):2956-64. PubMed ID: 23729165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-driven estimates of fertilizer-induced soil NH
    Ma R; Yu K; Xiao S; Liu S; Ciais P; Zou J
    Glob Chang Biol; 2022 Feb; 28(3):1008-1022. PubMed ID: 34738298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting field N
    Abalos D; Rittl TF; Recous S; Thiébeau P; Topp CFE; van Groenigen KJ; Butterbach-Bahl K; Thorman RE; Smith KE; Ahuja I; Olesen JE; Bleken MA; Rees RM; Hansen S
    Sci Total Environ; 2022 Mar; 812():152532. PubMed ID: 34952057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil N
    Li L; Hong M; Zhang Y; Paustian K
    Glob Chang Biol; 2024 Mar; 30(3):e17233. PubMed ID: 38469991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil texture, fertilization, cover crop species and management affect nitrous oxide emissions from no-till cropland.
    Sedghi N; Cavigelli M; Weil RR
    Sci Total Environ; 2024 Mar; 914():169991. PubMed ID: 38215843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Legacy effects of land use on soil nitrous oxide emissions in annual crop and perennial grassland ecosystems.
    Abraha M; Gelfand I; Hamilton SK; Chen J; Robertson GP
    Ecol Appl; 2018 Jul; 28(5):1362-1369. PubMed ID: 29856901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain.
    Gao J; Xie Y; Jin H; Liu Y; Bai X; Ma D; Zhu Y; Wang C; Guo T
    PLoS One; 2016; 11(5):e0154773. PubMed ID: 27152647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Century-long changes and drivers of soil nitrous oxide (N
    Lu C; Yu Z; Zhang J; Cao P; Tian H; Nevison C
    Glob Chang Biol; 2022 Apr; 28(7):2505-2524. PubMed ID: 34951088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues.
    Abalos D; Recous S; Butterbach-Bahl K; De Notaris C; Rittl TF; Topp CFE; Petersen SO; Hansen S; Bleken MA; Rees RM; Olesen JE
    Sci Total Environ; 2022 Jul; 828():154388. PubMed ID: 35276154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: a case study in central China.
    Lin S; Iqbal J; Hu R; Shaaban M; Cai J; Chen X
    Arch Environ Contam Toxicol; 2013 Aug; 65(2):183-92. PubMed ID: 23609028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micrometeorological measurements over 3 years reveal differences in N2 O emissions between annual and perennial crops.
    Abalos D; Brown SE; Vanderzaag AC; Gordon RJ; Dunfield KE; Wagner-Riddle C
    Glob Chang Biol; 2016 Mar; 22(3):1244-55. PubMed ID: 26491961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrate losses and nitrous oxide emissions under contrasting tillage and cover crop management.
    O'Brien PL; Emmett BD; Malone RW; Nunes MR; Kovar JL; Kaspar TC; Moorman TB; Jaynes DB; Parkin TB
    J Environ Qual; 2022 Jul; 51(4):683-695. PubMed ID: 35443288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential for the adoption of measures to reduce N
    De Notaris C; Abalos D; Mikkelsen MH; Olesen JE
    Sci Total Environ; 2022 Aug; 835():155510. PubMed ID: 35490810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A global meta-analysis of yield-scaled N
    Yao Z; Guo H; Wang Y; Zhan Y; Zhang T; Wang R; Zheng X; Butterbach-Bahl K
    Glob Chang Biol; 2024 Feb; 30(2):e17177. PubMed ID: 38348630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands?
    Abalos D; van Groenigen JW; De Deyn GB
    Glob Chang Biol; 2018 Jan; 24(1):e248-e258. PubMed ID: 28727214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cropland intensification mediates the radiative balance of greenhouse gas emissions and soil carbon sequestration in maize systems of sub-Saharan Africa.
    Zheng J; Canarini A; Fujii K; Mmari WN; Kilasara MM; Funakawa S
    Glob Chang Biol; 2023 Mar; 29(6):1514-1529. PubMed ID: 36462165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive effects of straw management, tillage, and a cover crop on nitrous oxide emissions and nitrate leaching from a sandy loam soil.
    Taghizadeh-Toosi A; Hansen EM; Olesen JE; Baral KR; Petersen SO
    Sci Total Environ; 2022 Jul; 828():154316. PubMed ID: 35257762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season.
    Pramanik P; Haque MM; Kim SY; Kim PJ
    Sci Total Environ; 2014 Aug; 490():622-8. PubMed ID: 24880551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.