BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37801008)

  • 1. Distinct microRNA Signature and Suppression of ZFP36L1 Define ASCL1-Positive Lung Adenocarcinoma.
    Enokido T; Horie M; Yoshino S; Suzuki HI; Matsuki R; Brunnström H; Micke P; Nagase T; Saito A; Miyashita N
    Mol Cancer Res; 2024 Jan; 22(1):29-40. PubMed ID: 37801008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ASCL1 regulates super-enhancer-associated miRNAs to define molecular subtypes of small cell lung cancer.
    Miyakawa K; Miyashita N; Horie M; Terasaki Y; Tanaka H; Urushiyama H; Fukuda K; Okabe Y; Ishii T; Kuwahara N; Suzuki HI; Nagase T; Saito A
    Cancer Sci; 2022 Nov; 113(11):3932-3946. PubMed ID: 35789143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascl1-induced Wnt11 regulates neuroendocrine differentiation, cell proliferation, and E-cadherin expression in small-cell lung cancer and Wnt11 regulates small-cell lung cancer biology.
    Tenjin Y; Kudoh S; Kubota S; Yamada T; Matsuo A; Sato Y; Ichimura T; Kohrogi H; Sashida G; Sakagami T; Ito T
    Lab Invest; 2019 Nov; 99(11):1622-1635. PubMed ID: 31231131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MiR-1226, mediated by ASCL1, suppresses the progression of non-small cell lung cancer by targeting FGF2.
    Lin F; Li R
    Bull Cancer; 2022 Apr; 109(4):424-435. PubMed ID: 35164915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of achaete-scute complex homologue 1 (ASCL1) in pulmonary neuroendocrine carcinomas; RNA sequence analyses using small cell lung cancer cells and Ascl1-induced pulmonary neuroendocrine carcinoma cells.
    Kudoh S; Tenjin Y; Kameyama H; Ichimura T; Yamada T; Matsuo A; Kudo N; Sato Y; Ito T
    Histochem Cell Biol; 2020 Jun; 153(6):443-456. PubMed ID: 32170367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrative transcriptome analysis reveals a functional role for thyroid transcription factor-1 in small cell lung cancer.
    Horie M; Miyashita N; Mattsson JSM; Mikami Y; Sandelin M; Brunnström H; Micke P; Nagase T; Saito A
    J Pathol; 2018 Oct; 246(2):154-165. PubMed ID: 29876935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers.
    Augustyn A; Borromeo M; Wang T; Fujimoto J; Shao C; Dospoy PD; Lee V; Tan C; Sullivan JP; Larsen JE; Girard L; Behrens C; Wistuba II; Xie Y; Cobb MH; Gazdar AF; Johnson JE; Minna JD
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14788-93. PubMed ID: 25267614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-375 is activated by ASH1 and inhibits YAP1 in a lineage-dependent manner in lung cancer.
    Nishikawa E; Osada H; Okazaki Y; Arima C; Tomida S; Tatematsu Y; Taguchi A; Shimada Y; Yanagisawa K; Yatabe Y; Toyokuni S; Sekido Y; Takahashi T
    Cancer Res; 2011 Oct; 71(19):6165-73. PubMed ID: 21856745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ASCL1 promotes tumor progression through cell-autonomous signaling and immune modulation in a subset of lung adenocarcinoma.
    Miyashita N; Horie M; Mikami Y; Urushiyama H; Fukuda K; Miyakawa K; Matsuzaki H; Makita K; Morishita Y; Harada H; Backman M; Lindskog C; Brunnström H; Micke P; Nagase T; Saito A
    Cancer Lett; 2020 Oct; 489():121-132. PubMed ID: 32534174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The microRNA expression signature of small cell lung cancer: tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes.
    Mizuno K; Mataki H; Arai T; Okato A; Kamikawaji K; Kumamoto T; Hiraki T; Hatanaka K; Inoue H; Seki N
    J Hum Genet; 2017 Jul; 62(7):671-678. PubMed ID: 28275243
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Mizuno K; Tanigawa K; Nohata N; Misono S; Okada R; Asai S; Moriya S; Suetsugu T; Inoue H; Seki N
    Cells; 2020 Sep; 9(9):. PubMed ID: 32932948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MiRNA expression profiling in adenocarcinoma and squamous cell lung carcinoma reveals both common and specific deregulated microRNAs.
    Petkova V; Marinova D; Kyurkchiyan S; Stancheva G; Mekov E; Kachakova-Yordanova D; Slavova Y; Kostadinov D; Mitev V; Kaneva R
    Medicine (Baltimore); 2022 Aug; 101(33):e30027. PubMed ID: 35984198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EGFR mediates activation of RET in lung adenocarcinoma with neuroendocrine differentiation characterized by ASCL1 expression.
    Bhinge K; Yang L; Terra S; Nasir A; Muppa P; Aubry MC; Yi J; Janaki N; Kovtun IV; Murphy SJ; Halling G; Rahi H; Mansfield A; de Andrade M; Yang P; Vasmatzis G; Peikert T; Kosari F
    Oncotarget; 2017 Apr; 8(16):27155-27165. PubMed ID: 28460442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of TTF-1 binding DNA regions in small-cell lung cancer and non-small-cell lung cancer.
    Hokari S; Tamura Y; Kaneda A; Katsura A; Morikawa M; Murai F; Ehata S; Tsutsumi S; Ishikawa Y; Aburatani H; Kikuchi T; Miyazono K; Koinuma D
    Mol Oncol; 2020 Feb; 14(2):277-293. PubMed ID: 31782890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA signature of small-cell lung cancer after treatment failure: impact on oncogenic targets by miR-30a-3p control.
    Tanigawa K; Misono S; Mizuno K; Asai S; Suetsugu T; Uchida A; Kawano M; Inoue H; Seki N
    Mol Oncol; 2023 Feb; 17(2):328-343. PubMed ID: 36345848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. POU domain transcription factor BRN2 is crucial for expression of ASCL1, ND1 and neuroendocrine marker molecules and cell growth in small cell lung cancer.
    Ishii J; Sato H; Sakaeda M; Shishido-Hara Y; Hiramatsu C; Kamma H; Shimoyamada H; Fujiwara M; Endo T; Aoki I; Yazawa T
    Pathol Int; 2013 Mar; 63(3):158-68. PubMed ID: 23530560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression patterns and prognostic relevance of subtype-specific transcription factors in surgically resected small-cell lung cancer: an international multicenter study.
    Megyesfalvi Z; Barany N; Lantos A; Valko Z; Pipek O; Lang C; Schwendenwein A; Oberndorfer F; Paku S; Ferencz B; Dezso K; Fillinger J; Lohinai Z; Moldvay J; Galffy G; Szeitz B; Rezeli M; Rivard C; Hirsch FR; Brcic L; Popper H; Kern I; Kovacevic M; Skarda J; Mittak M; Marko-Varga G; Bogos K; Renyi-Vamos F; Hoda MA; Klikovits T; Hoetzenecker K; Schelch K; Laszlo V; Dome B
    J Pathol; 2022 Aug; 257(5):674-686. PubMed ID: 35489038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-375 is highly expressed and possibly transactivated by achaete-scute complex homolog 1 in small-cell lung cancer cells.
    Zhao H; Zhu L; Jin Y; Ji H; Yan X; Zhu X
    Acta Biochim Biophys Sin (Shanghai); 2012 Feb; 44(2):177-82. PubMed ID: 22172490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Integrative Analysis of Transcriptome and Epigenome Features of ASCL1-Positive Lung Adenocarcinomas.
    Miyashita N; Horie M; Suzuki HI; Yoshihara M; Djureinovic D; Persson J; Brunnström H; Lindskog C; Elfving H; Micke P; Saito A; Nagase T
    J Thorac Oncol; 2018 Nov; 13(11):1676-1691. PubMed ID: 30121393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of microRNA-129-5p in glioblastoma inhibits cell proliferation, migration, and colony-forming ability by targeting ZFP36L1.
    Guo X; Piao H; Zhang Y; Sun P; Yao B
    Bosn J Basic Med Sci; 2020 Nov; 20(4):459-470. PubMed ID: 31999936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.