These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37801336)

  • 1. The Electrophysiological Markers of Statistically Learned Attentional Enhancement: Evidence for a Saliency-based Mechanism.
    Duncan DH; Theeuwes J; van Moorselaar D
    J Cogn Neurosci; 2023 Dec; 35(12):2110-2125. PubMed ID: 37801336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An EEG study of the combined effects of top-down and bottom-up attentional selection under varying task difficulty.
    Rashal E; Senoussi M; Santandrea E; Ben-Hamed S; Macaluso E; Chelazzi L; Boehler CN
    Psychophysiology; 2022 Jun; 59(6):e14002. PubMed ID: 35060631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical Salience and Value-Driven Salience Operate through Different Neural Mechanisms to Enhance Attentional Selection.
    Bachman MD; Wang L; Gamble ML; Woldorff MG
    J Neurosci; 2020 Jul; 40(28):5455-5464. PubMed ID: 32471878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saliency affects attentional capture and suppression of abrupt-onset and color singleton distractors: Evidence from event-related potential studies.
    Chen X; Xu B; Chen Y; Zeng X; Zhang Y; Fu S
    Psychophysiology; 2023 Aug; 60(8):e14290. PubMed ID: 36946491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated effects of top-down attention and statistical learning during visual search: An EEG study.
    Dolci C; Boehler CN; Santandrea E; Dewulf A; Ben-Hamed S; Macaluso E; Chelazzi L; Rashal E
    Atten Percept Psychophys; 2023 Aug; 85(6):1819-1833. PubMed ID: 37264294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Top-down search strategies determine attentional capture in visual search: behavioral and electrophysiological evidence.
    Eimer M; Kiss M
    Atten Percept Psychophys; 2010 May; 72(4):951-62. PubMed ID: 20436192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting N2pc from anticipatory HbO activity during sustained visuospatial attention: a concurrent fNIRS-ERP study.
    Huang J; Wang F; Ding Y; Niu H; Tian F; Liu H; Song Y
    Neuroimage; 2015 Jun; 113():225-34. PubMed ID: 25818691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The N2pc component and its links to attention shifts and spatially selective visual processing.
    Kiss M; Van Velzen J; Eimer M
    Psychophysiology; 2008 Mar; 45(2):240-9. PubMed ID: 17971061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attentional capture is modulated by stimulus saliency in visual search as evidenced by event-related potentials and alpha oscillations.
    Forschack N; Gundlach C; Hillyard S; Müller MM
    Atten Percept Psychophys; 2023 Apr; 85(3):685-704. PubMed ID: 36525202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cuing study of the N2pc component: an index of attentional deployment to objects rather than spatial locations.
    Woodman GF; Arita JT; Luck SJ
    Brain Res; 2009 Nov; 1297():101-11. PubMed ID: 19682440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attentional capture by size singletons is determined by top-down search goals.
    Kiss M; Eimer M
    Psychophysiology; 2011 Jun; 48(6):784-7. PubMed ID: 21539576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing the effects of feature salience and top-down attention in the early visual system.
    Poltoratski S; Ling S; McCormack D; Tong F
    J Neurophysiol; 2017 Jul; 118(1):564-573. PubMed ID: 28381491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection history alters attentional filter settings persistently and beyond top-down control.
    Kadel H; Feldmann-Wüstefeld T; Schubö A
    Psychophysiology; 2017 May; 54(5):736-754. PubMed ID: 28169422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Category-specific learned attentional bias to object parts.
    Chua KW; Gauthier I
    Atten Percept Psychophys; 2016 Jan; 78(1):44-51. PubMed ID: 26715512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of feature-specific task set and bottom-up salience in attentional capture: an ERP study.
    Eimer M; Kiss M; Press C; Sauter D
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1316-28. PubMed ID: 19803639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attentional capture by a color singleton is stronger at spatially relevant than irrelevant locations: Evidence from an ERP study.
    Su Y; Huang W; Yang N; Yan K; Ding Y; Qu Z
    Psychophysiology; 2020 Oct; 57(10):e13640. PubMed ID: 33460208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial filtering restricts the attentional window during both singleton and feature-based visual search.
    Berggren N; Eimer M
    Atten Percept Psychophys; 2020 Jul; 82(5):2360-2378. PubMed ID: 31993978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain and Cognitive Mechanisms of Top-Down Attentional Control in a Multisensory World: Benefits of Electrical Neuroimaging.
    Matusz PJ; Turoman N; Tivadar RI; Retsa C; Murray MM
    J Cogn Neurosci; 2019 Mar; 31(3):412-430. PubMed ID: 30513045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of attentional allocation to targets and distractors during visual search.
    Forschack N; Gundlach C; Hillyard S; Müller MM
    Neuroimage; 2022 Dec; 264():119759. PubMed ID: 36417950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.