These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 37801362)
1. Automatic Generation of Auxiliary Basis Sets in Spherical Representation Using the Cholesky Decomposition. Hellmann L; Neugebauer J J Phys Chem A; 2023 Oct; 127(41):8698-8711. PubMed ID: 37801362 [TBL] [Abstract][Full Text] [Related]
2. Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency. Aquilante F; Gagliardi L; Pedersen TB; Lindh R J Chem Phys; 2009 Apr; 130(15):154107. PubMed ID: 19388736 [TBL] [Abstract][Full Text] [Related]
3. Coupled Cluster and Møller-Plesset Perturbation Theory Calculations of Noncovalent Intermolecular Interactions using Density Fitting with Auxiliary Basis Sets from Cholesky Decompositions. Boström J; Pitoňák M; Aquilante F; Neogrády P; Pedersen TB; Lindh R J Chem Theory Comput; 2012 Jun; 8(6):1921-8. PubMed ID: 26593826 [TBL] [Abstract][Full Text] [Related]
4. Straightforward and Accurate Automatic Auxiliary Basis Set Generation for Molecular Calculations with Atomic Orbital Basis Sets. Lehtola S J Chem Theory Comput; 2021 Nov; 17(11):6886-6900. PubMed ID: 34614349 [TBL] [Abstract][Full Text] [Related]
5. Ab Initio Density Fitting: Accuracy Assessment of Auxiliary Basis Sets from Cholesky Decompositions. Boström J; Aquilante F; Pedersen TB; Lindh R J Chem Theory Comput; 2009 Jun; 5(6):1545-53. PubMed ID: 26609847 [TBL] [Abstract][Full Text] [Related]
6. Automated Generation of Optimized Auxiliary Basis Sets for Long-Range-Corrected TDDFT Using the Cholesky Decomposition. Hellmann L; Tölle J; Niemeyer N; Neugebauer J J Chem Theory Comput; 2022 May; 18(5):2959-2974. PubMed ID: 35446029 [TBL] [Abstract][Full Text] [Related]
7. Cholesky decomposition of the two-electron integral matrix in electronic structure calculations. Røeggen I; Johansen T J Chem Phys; 2008 May; 128(19):194107. PubMed ID: 18500856 [TBL] [Abstract][Full Text] [Related]
8. Accuracy and Efficiency of Coupled-Cluster Theory Using Density Fitting/Cholesky Decomposition, Frozen Natural Orbitals, and a t1-Transformed Hamiltonian. DePrince AE; Sherrill CD J Chem Theory Comput; 2013 Jun; 9(6):2687-96. PubMed ID: 26583862 [TBL] [Abstract][Full Text] [Related]
9. Automatic Generation of Accurate and Cost-Efficient Auxiliary Basis Sets. Lehtola S J Chem Theory Comput; 2023 Sep; 19(18):6242-6254. PubMed ID: 37661914 [TBL] [Abstract][Full Text] [Related]
10. Unbiased auxiliary basis sets for accurate two-electron integral approximations. Aquilante F; Lindh R; Pedersen TB J Chem Phys; 2007 Sep; 127(11):114107. PubMed ID: 17887828 [TBL] [Abstract][Full Text] [Related]
11. Generalization of the Gaussian electrostatic model: extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods. Cisneros GA; Piquemal JP; Darden TA J Chem Phys; 2006 Nov; 125(18):184101. PubMed ID: 17115732 [TBL] [Abstract][Full Text] [Related]
12. Accurate ab initio density fitting for multiconfigurational self-consistent field methods. Aquilante F; Pedersen TB; Lindh R; Roos BO; Sánchez de Merás A; Koch H J Chem Phys; 2008 Jul; 129(2):024113. PubMed ID: 18624522 [TBL] [Abstract][Full Text] [Related]
13. Calibration of Cholesky Auxiliary Basis Sets for Multiconfigurational Perturbation Theory Calculations of Excitation Energies. Boström J; Delcey MG; Aquilante F; Serrano-Andrés L; Pedersen TB; Lindh R J Chem Theory Comput; 2010 Mar; 6(3):747-54. PubMed ID: 26613305 [TBL] [Abstract][Full Text] [Related]
14. An efficient algorithm for Cholesky decomposition of electron repulsion integrals. Folkestad SD; Kjønstad EF; Koch H J Chem Phys; 2019 May; 150(19):194112. PubMed ID: 31117774 [TBL] [Abstract][Full Text] [Related]
15. Analytic derivatives for the Cholesky representation of the two-electron integrals. Aquilante F; Lindh R; Pedersen TB J Chem Phys; 2008 Jul; 129(3):034106. PubMed ID: 18647015 [TBL] [Abstract][Full Text] [Related]
16. Method specific Cholesky decomposition: coulomb and exchange energies. Boman L; Koch H; Sánchez de Merás A J Chem Phys; 2008 Oct; 129(13):134107. PubMed ID: 19045078 [TBL] [Abstract][Full Text] [Related]
17. Cholesky decomposition of complex two-electron integrals over GIAOs: Efficient MP2 computations for large molecules in strong magnetic fields. Blaschke S; Stopkowicz S J Chem Phys; 2022 Jan; 156(4):044115. PubMed ID: 35105060 [TBL] [Abstract][Full Text] [Related]
18. Density-functional generalized-gradient and hybrid calculations of electromagnetic properties using Slater basis sets. Watson MA; Handy NC; Cohen AJ; Helgaker T J Chem Phys; 2004 Apr; 120(16):7252-61. PubMed ID: 15267634 [TBL] [Abstract][Full Text] [Related]
19. A full-pivoting algorithm for the Cholesky decomposition of two-electron repulsion and spin-orbit coupling integrals. Piccardo M; Soncini A J Comput Chem; 2017 Dec; 38(32):2775-2783. PubMed ID: 28944973 [TBL] [Abstract][Full Text] [Related]
20. Toward the Minimal Floating Operation Count Cholesky Decomposition of Electron Repulsion Integrals. Zhang T; Liu X; Valeev EF; Li X J Phys Chem A; 2021 May; 125(19):4258-4265. PubMed ID: 33970626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]