These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37801378)

  • 1. Fear-Neuro-Inspired Reinforcement Learning for Safe Autonomous Driving.
    He X; Wu J; Huang Z; Hu Z; Wang J; Sangiovanni-Vincentelli A; Lv C
    IEEE Trans Pattern Anal Mach Intell; 2024 Jan; 46(1):267-279. PubMed ID: 37801378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dense reinforcement learning for safety validation of autonomous vehicles.
    Feng S; Sun H; Yan X; Zhu H; Zou Z; Shen S; Liu HX
    Nature; 2023 Mar; 615(7953):620-627. PubMed ID: 36949337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Safe Decision Controller for Autonomous DrivingBased on Deep Reinforcement Learning inNondeterministic Environment.
    Chen H; Zhang Y; Bhatti UA; Huang M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph Reinforcement Learning-Based Decision-Making Technology for Connected and Autonomous Vehicles: Framework, Review, and Future Trends.
    Liu Q; Li X; Tang Y; Gao X; Yang F; Li Z
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Personalized Behavior Learning System for Human-Like Longitudinal Speed Control of Autonomous Vehicles.
    Lu C; Gong J; Lv C; Chen X; Cao D; Chen Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a Brain-Inspired System: Deep Recurrent Reinforcement Learning for a Simulated Self-Driving Agent.
    Chen J; Chen J; Zhang R; Hu X
    Front Neurorobot; 2019; 13():40. PubMed ID: 31316366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multi-Task Fusion Strategy-Based Decision-Making and Planning Method for Autonomous Driving Vehicles.
    Liu W; Xiang Z; Fang H; Huo K; Wang Z
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PORF-DDPG: Learning Personalized Autonomous Driving Behavior with Progressively Optimized Reward Function.
    Chen J; Wu T; Shi M; Jiang W
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-like Decision Making for Autonomous Vehicles at the Intersection Using Inverse Reinforcement Learning.
    Wu Z; Qu F; Yang L; Gong J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning.
    Wang Z; Huang H; Tang J; Meng X; Hu L
    Accid Anal Prev; 2022 Sep; 174():106729. PubMed ID: 35700685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Social behavior for autonomous vehicles.
    Schwarting W; Pierson A; Alonso-Mora J; Karaman S; Rus D
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):24972-24978. PubMed ID: 31757853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and Risk Analysis with Lane-Changing Decision Algorithms for Autonomous Vehicles.
    Mechernene A; Judalet V; Chaibet A; Boukhnifer M
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetaDrive: Composing Diverse Driving Scenarios for Generalizable Reinforcement Learning.
    Li Q; Peng Z; Feng L; Zhang Q; Xue Z; Zhou B
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3461-3475. PubMed ID: 35830412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous Driving Control Based on the Technique of Semantic Segmentation.
    Tsai J; Chang CC; Li T
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weakly Supervised Reinforcement Learning for Autonomous Highway Driving via Virtual Safety Cages.
    Kuutti S; Bowden R; Fallah S
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33805601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm.
    Ashraf NM; Mostafa RR; Sakr RH; Rashad MZ
    PLoS One; 2021; 16(6):e0252754. PubMed ID: 34111168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Do Autonomous Vehicles Decide?
    Malik S; Khan MA; El-Sayed H; Khan J; Ullah O
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research into Autonomous Vehicles Following and Obstacle Avoidance Based on Deep Reinforcement Learning Method under Map Constraints.
    Li Z; Yuan S; Yin X; Li X; Tang S
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PaCAR: COVID-19 Pandemic Control Decision Making via Large-Scale Agent-Based Modeling and Deep Reinforcement Learning.
    Guo X; Chen P; Liang S; Jiao Z; Li L; Yan J; Huang Y; Liu Y; Fan W
    Med Decis Making; 2022 Nov; 42(8):1064-1077. PubMed ID: 35775610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.