BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37801862)

  • 1. Common and distinct patterns of acquired uniparental disomy and homozygous deletions between lung squamous cell carcinomas and lung adenocarcinoma.
    Tuna M; Mills GB; Amos CI
    Neoplasia; 2023 Nov; 45():100932. PubMed ID: 37801862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Profiling of Acquired Uniparental Disomy Reveals Prognostic Factors in Head and Neck Squamous Cell Carcinoma.
    Tuna M; Liu W; Amos CI; Mills GB
    Neoplasia; 2019 Nov; 21(11):1102-1109. PubMed ID: 31734631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. System analysis of
    Situ Y; Gao R; Lei L; Deng L; Xu Q; Shao Z
    Int J Biol Markers; 2022 Jun; 37(2):158-169. PubMed ID: 35254116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LncRNAs are altered in lung squamous cell carcinoma and lung adenocarcinoma.
    Liu B; Chen Y; Yang J
    Oncotarget; 2017 Apr; 8(15):24275-24291. PubMed ID: 27903974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-chromosome arm acquired uniparental disomy in cancer development is a consequence of isochromosome formation.
    Tuna M; Amos CI; Mills GB
    Neoplasia; 2022 Mar; 25():9-17. PubMed ID: 35065533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prognostic relevance of acquired uniparental disomy in serous ovarian cancer.
    Tuna M; Ju Z; Smid M; Amos CI; Mills GB
    Mol Cancer; 2015 Feb; 14(1):29. PubMed ID: 25644622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Wide Analysis of Head and Neck Squamous Cell Carcinomas Reveals HPV, TP53, Smoking and Alcohol-Related Allele-Based Acquired Uniparental Disomy Genomic Alterations.
    Tuna M; Amos CI; Mills GB
    Neoplasia; 2019 Feb; 21(2):197-205. PubMed ID: 30616092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-occurrence of CDKN2A/B and IFN-I homozygous deletions correlates with an immunosuppressive phenotype and poor prognosis in lung adenocarcinoma.
    Peng Y; Chen Y; Song M; Zhang X; Li P; Yu X; Huang Y; Zhang N; Ji L; Xia L; Xia X; Yi X; Tan B; Yang Z
    Mol Oncol; 2022 Apr; 16(8):1746-1760. PubMed ID: 35253368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated PHD2 expression might serve as a valuable biomarker of poor prognosis in lung adenocarcinoma, but no lung squamous cell carcinoma.
    Xu XL; Gong Y; Zhao DP
    Eur Rev Med Pharmacol Sci; 2018 Dec; 22(24):8731-8739. PubMed ID: 30575913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer Stemness-Based Prognostic Immune-Related Gene Signatures in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma.
    Li N; Li Y; Zheng P; Zhan X
    Front Endocrinol (Lausanne); 2021; 12():755805. PubMed ID: 34745015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of TOP2A and ADH1B with lipid levels and prognosis in patients with lung adenocarcinoma and squamous cell carcinoma.
    Yin D; Zhang Y; Li H; Cheng L
    Clin Respir J; 2023 Dec; 17(12):1301-1315. PubMed ID: 37985446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the heterogeneity of the tumor microenvironment in lung adenocarcinoma and squamous carcinoma through single-cell transcriptomic analysis: Implications for distinct immunotherapy outcomes.
    Fang X; Li D; Wan S; Hu J; Zhang P; Jie D; Chen L; Jiang G; Song N
    J Gene Med; 2024 Jun; 26(6):e3694. PubMed ID: 38847309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Profiling of Genomic and Transcriptomic Differences between Risk Groups of Lung Adenocarcinoma and Lung Squamous Cell Carcinoma.
    Zengin T; Önal-Süzek T
    J Pers Med; 2021 Feb; 11(2):. PubMed ID: 33672117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High ECT2 expression is an independent prognostic factor for poor overall survival and recurrence-free survival in non-small cell lung adenocarcinoma.
    Zhou S; Wang P; Su X; Chen J; Chen H; Yang H; Fang A; Xie L; Yao Y; Yang J
    PLoS One; 2017; 12(10):e0187356. PubMed ID: 29088286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatics analysis of differentially expressed miRNAs in non-small cell lung cancer.
    Yu H; Pang Z; Li G; Gu T
    J Clin Lab Anal; 2021 Feb; 35(2):e23588. PubMed ID: 32965722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genomic alterations of lung adenocarcinoma and lung squamous cell carcinoma can explain the differences of their overall survival rates.
    Meng F; Zhang L; Ren Y; Ma Q
    J Cell Physiol; 2019 Jul; 234(7):10918-10925. PubMed ID: 30549039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study on the mutational profile of adenocarcinoma and squamous cell carcinoma predominant histologic subtypes in Chinese non-small cell lung cancer patients.
    Ding Y; Zhang L; Guo L; Wu C; Zhou J; Zhou Y; Ma J; Li X; Ji P; Wang M; Zhu W; Shi C; Li S; Wu W; Zhu W; Xiao D; Fu C; He Q; Sun R; Mao X; Lizaso A; Li B; Han-Zhang H; Zhang Z
    Thorac Cancer; 2020 Jan; 11(1):103-112. PubMed ID: 31692283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring and comparing of the gene expression and methylation differences between lung adenocarcinoma and squamous cell carcinoma.
    Yang Y; Wang M; Liu B
    J Cell Physiol; 2019 Apr; 234(4):4454-4459. PubMed ID: 30317601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Immune-Related Gene Signatures in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma.
    Li N; Wang J; Zhan X
    Front Immunol; 2021; 12():752643. PubMed ID: 34887858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smoking is Associated with Lung Adenocarcinoma and Lung Squamous Cell Carcinoma Progression through Inducing Distinguishing lncRNA Alterations in Different Genders.
    Liu B; Liu Y; Zou J; Zou M; Cheng Z
    Anticancer Agents Med Chem; 2022; 22(8):1541-1550. PubMed ID: 34315392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.