These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37801863)

  • 1. Shape-model scaling is more robust than linear scaling to marker placement error.
    Bakke D; Ortega-Auriol P; Besier T
    J Biomech; 2023 Nov; 160():111805. PubMed ID: 37801863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape model constrained scaling improves repeatability of gait data.
    Bakke D; Besier T
    J Biomech; 2020 Jun; 107():109838. PubMed ID: 32517858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of the lower limb bones from digitised anatomical landmarks using statistical shape modelling.
    Nolte D; Ko ST; Bull AMJ; Kedgley AE
    Gait Posture; 2020 Mar; 77():269-275. PubMed ID: 32092603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical shape modelling versus linear scaling: Effects on predictions of hip joint centre location and muscle moment arms in people with hip osteoarthritis.
    Bahl JS; Zhang J; Killen BA; Taylor M; Solomon LB; Arnold JB; Lloyd DG; Besier TF; Thewlis D
    J Biomech; 2019 Mar; 85():164-172. PubMed ID: 30770197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model-A sensitivity study.
    Fonseca M; Gasparutto X; Leboeuf F; Dumas R; Armand S
    PLoS One; 2020; 15(4):e0232064. PubMed ID: 32330162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Best methods and data to reconstruct paediatric lower limb bones for musculoskeletal modelling.
    Davico G; Pizzolato C; Killen BA; Barzan M; Suwarganda EK; Lloyd DG; Carty CP
    Biomech Model Mechanobiol; 2020 Aug; 19(4):1225-1238. PubMed ID: 31691037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P; Sartori M; Besier TF; Fregly BJ; Delp SL; Banks SA; Pandy MG; D'Lima DD; Lloyd DG
    J Biomech; 2013 Nov; 46(16):2778-86. PubMed ID: 24074941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the hip joint centre in children: New regression equations, linear scaling, and statistical shape modelling.
    Carman L; Besier TF; Choisne J
    J Biomech; 2022 Sep; 142():111265. PubMed ID: 36027636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of femoral strain calculations to anatomical scaling errors in musculoskeletal models of movement.
    Martelli S; Kersh ME; Pandy MG
    J Biomech; 2015 Oct; 48(13):3606-15. PubMed ID: 26315919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal medical imaging can accurately reconstruct geometric bone models for musculoskeletal models.
    Suwarganda EK; Diamond LE; Lloyd DG; Besier TF; Zhang J; Killen BA; Savage TN; Saxby DJ
    PLoS One; 2019; 14(2):e0205628. PubMed ID: 30742643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of increased pushoff during gait on hip joint forces.
    Lewis CL; Garibay EJ
    J Biomech; 2015 Jan; 48(1):181-5. PubMed ID: 25468661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of toe marker placement error on joint kinematics and muscle forces using OpenSim gait simulation.
    Xu H; Merryweather A; Bloswick D; Mao Q; Wang T
    Biomed Mater Eng; 2015; 26 Suppl 1():S685-91. PubMed ID: 26406064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of scaling errors of the thigh and shank segments on musculoskeletal simulation results.
    Koller W; Baca A; Kainz H
    Gait Posture; 2021 Jun; 87():65-74. PubMed ID: 33894464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of femur reconstruction from sparse geometric data using a statistical shape model.
    Zhang J; Besier TF
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):566-576. PubMed ID: 27998170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A femoral model with all relevant muscles and hip capsule ligaments.
    Helwig P; Hindenlang U; Hirschmüller A; Konstantinidis L; Südkamp N; Schneider R
    Comput Methods Biomech Biomed Engin; 2013; 16(6):669-77. PubMed ID: 22149414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hip centre regression progression: Same equations, better numbers.
    Bakke D; Zhang J; Hislop-Jambrich J; Besier T
    J Biomech; 2023 Jan; 147():111418. PubMed ID: 36657238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional knee model: constrained by isometric ligament bundles and experimentally obtained tibio-femoral contacts.
    Akalan NE; Ozkan M; Temelli Y
    J Biomech; 2008; 41(4):890-6. PubMed ID: 18456914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hip joint kinematics driven model for the generation of realistic thigh soft tissue artefacts.
    Camomilla V; Cereatti A; Chèze L; Cappozzo A
    J Biomech; 2013 Feb; 46(3):625-30. PubMed ID: 23116764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomical variations of the equine femur and tibia using statistical shape modeling.
    He H; Banks SA; Biedrzycki AH
    PLoS One; 2023; 18(6):e0287381. PubMed ID: 37390069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hip joint centre location from anatomical landmarks for automotive seated posture reconstruction.
    Peng J; Wang X; Denninger L; Panda J; Van Sint Jan S
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():195-7. PubMed ID: 23923906
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.