BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37801931)

  • 1. A smartphone-assisted one-step bicolor colorimetric detection of glucose in neutral environment based on molecularly imprinted polymer nanozymes.
    Li T; Bu J; Yang Y; Zhong S
    Talanta; 2024 Jan; 267():125256. PubMed ID: 37801931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobile phone-assisted imprinted nanozyme for bicolor colorimetric visual detection of erythromycin in river water and milk samples.
    Li T; Xiao L; Ling H; Yang Y; Zhong S
    Food Chem; 2024 Aug; 449():139291. PubMed ID: 38608609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boron-doped g-C
    Fu Q; Liang S; Zhang S; Zhou C; Lv Y; Su X
    Anal Chim Acta; 2024 Jul; 1311():342715. PubMed ID: 38816154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-free colorimetric sensor based on molecularly imprinted polymer and ninhydrin for methamphetamine detection.
    Akhoundian M; Alizadeh T
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121866. PubMed ID: 36108410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper regulation of PtRhRuCu nanozyme targeted boosting peroxidase-like activity for ultrasensitive smartphone-assisted colorimetric sensing of glucose.
    Zhi X; Yang Q; Zhang X; Zhang H; Gao Y; Zhang L; Tong Y; He W
    Food Chem; 2024 Jul; 445():138788. PubMed ID: 38394910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using a Smartphone-Based Colorimetric Device with Molecularly Imprinted Polymer for the Quantification of Tartrazine in Soda Drinks.
    Jacinto C; Maza Mejía I; Khan S; López R; Sotomayor MDPT; Picasso G
    Biosensors (Basel); 2023 Jun; 13(6):. PubMed ID: 37367004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Synthesis of Iron and Nitrogen Co-Doped Carbon Dot Nanozyme as Highly Efficient Peroxidase Mimics for Visualized Detection of Metabolites.
    Xu S; Zhang S; Li Y; Liu J
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-assisted Te-CdS@Mn
    Lu Z; Dai S; Liu T; Yang J; Sun M; Wu C; Su G; Wang X; Rao H; Yin H; Zhou X; Ye J; Wang Y
    Biosens Bioelectron; 2023 Feb; 222():114996. PubMed ID: 36521203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-Cyclodextrin coated porous Pd@Au nanostructures with enhanced peroxidase-like activity for colorimetric and paper-based determination of glucose.
    Li F; Hu Y; Zhao A; Xi Y; Li Z; He J
    Mikrochim Acta; 2020 Jul; 187(8):425. PubMed ID: 32623601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanozyme-induced deep learning-assisted smartphone integrated colorimetric and fluorometric dual-mode for detection of tetracycline analogs.
    Zhang Y; Wang M; Shao C; Liu T; Sun M; Wu C; Su G; Wang Y; Ye J; Hu H; Li Y; Rao H; Lu Z
    Anal Chim Acta; 2024 Apr; 1297():342373. PubMed ID: 38438242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of 2D artificial nanozyme-based blocking effect-triggered colorimetric sensor for onsite visual assay of residual tetracycline in milk.
    Shen Y; Wei Y; Liu Z; Nie C; Ye Y
    Mikrochim Acta; 2022 May; 189(6):233. PubMed ID: 35622176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimetallic FeMn@C derived from Prussian blue analogue as efficient nanozyme for glucose detection.
    Yang X; Feng C; Peng A; Wang Q; Liu ZY; Pei F; Mu J; Yang EC
    Anal Bioanal Chem; 2022 Nov; 414(27):7773-7782. PubMed ID: 36066578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biosensor based on Fe
    Fei J; Yang W; Dai Y; Xu W; Fan H; Zheng Y; Zhang J; Zhu W; Hong J; Zhou X
    Mikrochim Acta; 2023 Jul; 190(8):336. PubMed ID: 37515610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co
    Jiang S; Su G; Wu J; Song C; Lu Z; Wu C; Wang Y; Wang P; He M; Zhao Y; Jiang Y; Zhao X; Rao H; Sun M
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11787-11801. PubMed ID: 36802380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-assisted smartphone-based molecularly imprinted electrochemiluminescence detection sensing platform: Protable device and visual monitoring furosemide.
    Zhang Y; Cui Y; Sun M; Wang T; Liu T; Dai X; Zou P; Zhao Y; Wang X; Wang Y; Zhou M; Su G; Wu C; Yin H; Rao H; Lu Z
    Biosens Bioelectron; 2022 Aug; 209():114262. PubMed ID: 35429772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing Colorimetric Assay Based on V₂O₅ Nanozymes for Sensitive Detection of H₂O₂ and Glucose.
    Sun J; Li C; Qi Y; Guo S; Liang X
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel TMD-based peroxidase-mimicking nanozyme: From naked eye detection of leukocytosis-related diseases to sensing different bioanalytes.
    Afsah-Sahebi A; Shahangian SS; Khodajou-Masouleh H; H Sajedi R
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122260. PubMed ID: 36580748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A generalizable sensing platform based on molecularly imprinted polymer-aptamer double recognition and nanoenzyme assisted photoelectrochemical-colorimetric dual-mode detection.
    Shen YZ; Xie WZ; Wang Z; Ning KP; Ji ZP; Li HB; Hu XY; Ma C; Qin X
    Biosens Bioelectron; 2024 Jun; 254():116201. PubMed ID: 38507928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanozyme Based on Dispersion of Hemin by Graphene Quantum Dots for Colorimetric Detection of Glutathione.
    Li Z; Deng X; Hong X; Zhao S
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A feasible image-based colorimetric assay using a smartphone RGB camera for point-of-care monitoring of diabetes.
    Wang TT; Lio CK; Huang H; Wang RY; Zhou H; Luo P; Qing LS
    Talanta; 2020 Jan; 206():120211. PubMed ID: 31514873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.