These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37801949)
1. Estimation of the distribution patterns of heavy metal in soil from airborne hyperspectral imagery based on spectral absorption characteristics. Tan K; Chen L; Wang H; Liu Z; Ding J; Wang X J Environ Manage; 2023 Dec; 347():119196. PubMed ID: 37801949 [TBL] [Abstract][Full Text] [Related]
2. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism. Chen L; Lai J; Tan K; Wang X; Chen Y; Ding J Sci Total Environ; 2022 Mar; 813():151882. PubMed ID: 34822891 [TBL] [Abstract][Full Text] [Related]
3. Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: From ground-based and airborne data to satellite-simulated data. Wang Y; Zhang X; Sun W; Wang J; Ding S; Liu S Sci Total Environ; 2022 Sep; 838(Pt 2):156129. PubMed ID: 35605855 [TBL] [Abstract][Full Text] [Related]
4. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning. Tan K; Ma W; Chen L; Wang H; Du Q; Du P; Yan B; Liu R; Li H J Hazard Mater; 2021 Jan; 401():123288. PubMed ID: 32645545 [TBL] [Abstract][Full Text] [Related]
5. Random forest-based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data. Tan K; Ma W; Wu F; Du Q Environ Monit Assess; 2019 Jun; 191(7):446. PubMed ID: 31214787 [TBL] [Abstract][Full Text] [Related]
6. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest. Tan K; Wang H; Chen L; Du Q; Du P; Pan C J Hazard Mater; 2020 Jan; 382():120987. PubMed ID: 31454609 [TBL] [Abstract][Full Text] [Related]
7. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China. Zhang B; Guo B; Zou B; Wei W; Lei Y; Li T Environ Pollut; 2022 May; 300():118981. PubMed ID: 35150799 [TBL] [Abstract][Full Text] [Related]
8. [Estimating heavy metal concentrations in topsoil from vegetation reflectance spectra of Hyperion images: A case study of Yushu County, Qinghai, China.]. Yang LY; Gao XH; Zhang W; Shi FF; He LH; Jia W Ying Yong Sheng Tai Xue Bao; 2016 Jun; 27(6):1775-1784. PubMed ID: 29737683 [TBL] [Abstract][Full Text] [Related]
9. Spectral characteristics of the correlation between elemental arsenic and vegetation stress in the Yueliangbao gold mining. Lin W; Tu Y; Liu F; Guo Y; Wang X; Su J Environ Geochem Health; 2023 Nov; 45(11):8203-8219. PubMed ID: 37555879 [TBL] [Abstract][Full Text] [Related]
10. Estimate of soil heavy metal in a mining region using PCC-SVM-RFECV-AdaBoost combined with reflectance spectroscopy. Wang Y; Niu R; Lin G; Xiao Y; Ma H; Zhao L Environ Geochem Health; 2023 Dec; 45(12):9103-9121. PubMed ID: 36869963 [TBL] [Abstract][Full Text] [Related]
11. Pollution level mapping of heavy metal in soil for ground-airborne hyperspectral data with support vector machine and deep neural network: A case study of Southwestern Xiong'an, China. Wang M; Wang C; Ruan J; Liu W; Huang Z; Chen M; Ni B Environ Pollut; 2023 Mar; 321():121132. PubMed ID: 36736814 [TBL] [Abstract][Full Text] [Related]
12. Inversion of heavy metal copper content in soil-wheat systems using hyperspectral techniques and enrichment characteristics. Zhong L; Yang S; Chu X; Sun Z; Li J Sci Total Environ; 2024 Jan; 907():168104. PubMed ID: 37884148 [TBL] [Abstract][Full Text] [Related]
13. Spatial Pattern, Sources Identification, and Risk Assessment of Heavy Metals in a Typical Soda Soil from Bayannur, Northwestern China. Zhang S; Wang T; Wang H; Kang Q; Zhou Q; Chen B Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36360760 [TBL] [Abstract][Full Text] [Related]
14. Inversion of heavy metal content in soil using hyperspectral characteristic bands-based machine learning method. Zou Z; Wang Q; Wu Q; Li M; Zhen J; Yuan D; Zhou M; Xu C; Wang Y; Zhao Y; Yin S; Xu L J Environ Manage; 2024 Mar; 355():120503. PubMed ID: 38457894 [TBL] [Abstract][Full Text] [Related]
15. Investigating heavy-metal soil contamination state on the rate of stomach cancer using remote sensing spectral features. Mohammadnezhad K; Sahebi MR; Alatab S; Sajadi A Environ Monit Assess; 2023 Apr; 195(5):583. PubMed ID: 37072608 [TBL] [Abstract][Full Text] [Related]
16. Monitoring effects of heavy metal stress on biochemical and spectral parameters of cotton using hyperspectral reflectance. Priya S; Ghosh R Environ Monit Assess; 2022 Nov; 195(1):112. PubMed ID: 36380214 [TBL] [Abstract][Full Text] [Related]
17. Spatial Distribution of Heavy Metals and the Environmental Quality of Soil in the Northern Plateau of Spain by Geostatistical Methods. Santos-Francés F; Martínez-Graña A; Zarza CÁ; Sánchez AG; Rojo PA Int J Environ Res Public Health; 2017 May; 14(6):. PubMed ID: 28587142 [TBL] [Abstract][Full Text] [Related]
18. Spectral Estimation Model Construction of Heavy Metals in Mining Reclamation Areas. Dong J; Dai W; Xu J; Li S Int J Environ Res Public Health; 2016 Jun; 13(7):. PubMed ID: 27367708 [TBL] [Abstract][Full Text] [Related]
19. Concentration estimation of heavy metal in soils from typical sewage irrigation area of Shandong Province, China using reflectance spectroscopy. Wang F; Li C; Wang J; Cao W; Wu Q Environ Sci Pollut Res Int; 2017 Jul; 24(20):16883-16892. PubMed ID: 28573565 [TBL] [Abstract][Full Text] [Related]
20. Performance of hyperspectral data in predicting and mapping zinc concentration in soil. Sun W; Liu S; Zhang X; Zhu H Sci Total Environ; 2022 Jun; 824():153766. PubMed ID: 35151742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]