These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37802050)
1. Phenotypic and Transcriptional Responses of Zhao Z; Luo YH; Wang TH; Sinha S; Ling L; Rittmann B; Alvarez P; Perreault F; Westerhoff P Environ Sci Technol; 2023 Oct; 57(41):15736-15746. PubMed ID: 37802050 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of biofouling on reverse osmosis membrane surfaces by germicidal ultraviolet light side-emitting optical fibers. Rho H; Yu P; Zhao Z; Lee CS; Chon K; Perreault F; Alvarez PJJ; Amy G; Westerhoff P Water Res; 2022 Oct; 224():119094. PubMed ID: 36115159 [TBL] [Abstract][Full Text] [Related]
3. Germicidal glowsticks: Side-emitting optical fibers inhibit Pseudomonas aeruginosa and Escherichia coli on surfaces. Lanzarini-Lopes M; Zhao Z; Perreault F; Garcia-Segura S; Westerhoff P Water Res; 2020 Oct; 184():116191. PubMed ID: 32721764 [TBL] [Abstract][Full Text] [Related]
4. UV-C side-emitting optical fiber-based disinfection: a promising approach for infection control in tight channels. Mohsin MS; Avdic M; Fitzpatrick K; Lanzarini-Lopes M Microbiol Spectr; 2024 Jun; 12(6):e0004024. PubMed ID: 38687120 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of biofilm-bound Pseudomonas aeruginosa bacteria using UVC light emitting diodes (UVC LEDs). Gora SL; Rauch KD; Ontiveros CC; Stoddart AK; Gagnon GA Water Res; 2019 Mar; 151():193-202. PubMed ID: 30594087 [TBL] [Abstract][Full Text] [Related]
6. Biofouling control in water by various UVC wavelengths and doses. Lakretz A; Ron EZ; Mamane H Biofouling; 2010; 26(3):257-67. PubMed ID: 20024789 [TBL] [Abstract][Full Text] [Related]
7. Inactivation of Pseudomonas aeruginosa Biofilms by 405-Nanometer-Light-Emitting Diode Illumination. Yang Y; Ma S; Xie Y; Wang M; Cai T; Li J; Guo D; Zhao L; Xu Y; Liang S; Xia X; Shi C Appl Environ Microbiol; 2020 May; 86(10):. PubMed ID: 32169938 [TBL] [Abstract][Full Text] [Related]
8. Nanoparticle and Transparent Polymer Coatings Enable UV-C Side-Emission Optical Fibers for Inactivation of Lanzarini-Lopes M; Cruz B; Garcia-Segura S; Alum A; Abbaszadegan M; Westerhoff P Environ Sci Technol; 2019 Sep; 53(18):10880-10887. PubMed ID: 31397559 [TBL] [Abstract][Full Text] [Related]
9. Inactivation of biofilm-bound bacterial cells using irradiation across UVC wavelengths. Ma B; Seyedi S; Wells E; McCarthy D; Crosbie N; Linden KG Water Res; 2022 Jun; 217():118379. PubMed ID: 35429876 [TBL] [Abstract][Full Text] [Related]
10. Inactivation of Pseudomonas aeruginosa biofilm after ultraviolet light-emitting diode treatment: a comparative study between ultraviolet C and ultraviolet B. Argyraki A; Markvart M; Bjørndal L; Bjarnsholt T; Petersen PM J Biomed Opt; 2017 Jun; 22(6):65004. PubMed ID: 28655056 [TBL] [Abstract][Full Text] [Related]
11. Cell density and extracellular matrix composition mitigate bacterial biofilm sensitivity to UV-C LED irradiation. Labadie M; Marchal F; Merbahi N; Girbal-Neuhauser E; Fontagné-Faucher C; Marcato-Romain CE Appl Microbiol Biotechnol; 2024 Apr; 108(1):286. PubMed ID: 38578301 [TBL] [Abstract][Full Text] [Related]
12. Disinfection of Pseudomonas aeruginosa biofilm contaminated tube lumens with ultraviolet C light emitting diodes. Bak J; Ladefoged SD; Tvede M; Begovic T; Gregersen A Biofouling; 2010 Jan; 26(1):31-8. PubMed ID: 20390554 [TBL] [Abstract][Full Text] [Related]
13. Impacts of UV-C Irradiation on Marine Biofilm Community Succession. Naik A; Smithers M; Moisander PH Appl Environ Microbiol; 2022 Feb; 88(4):e0229821. PubMed ID: 34936837 [TBL] [Abstract][Full Text] [Related]
14. Biofilm control in water by a UV-based advanced oxidation process. Lakretz A; Ron EZ; Mamane H Biofouling; 2011 Mar; 27(3):295-307. PubMed ID: 21390914 [TBL] [Abstract][Full Text] [Related]
15. Biofilm inactivation using LED systems emitting germicidal UV and antimicrobial blue light. Pousty D; Ma B; Mathews C; Halanur M; Mamane H; Linden KG Water Res; 2024 Dec; 267():122449. PubMed ID: 39316962 [TBL] [Abstract][Full Text] [Related]
16. Boron Doped Diamond as a Low Biofouling Material in Aquatic Environments: Assessment of Simcox LJ; Pereira RPA; Wellington EMH; Macpherson JV ACS Appl Mater Interfaces; 2019 Jul; 11(28):25024-25033. PubMed ID: 31260250 [TBL] [Abstract][Full Text] [Related]
17. Role of quorum sensing in UVA-induced biofilm formation in Pezzoni M; Pizarro RA; Costa CS Microbiology (Reading); 2020 Aug; 166(8):735-750. PubMed ID: 32496187 [No Abstract] [Full Text] [Related]
18. Hormetic Promotion of Biofilm Growth by Polyvalent Bacteriophages at Low Concentrations. Zhang B; Yu P; Wang Z; Alvarez PJJ Environ Sci Technol; 2020 Oct; 54(19):12358-12365. PubMed ID: 32886494 [TBL] [Abstract][Full Text] [Related]
19. Biofilm growth under continuous UVC irradiation: Quantitative effects of growth conditions and growth time on intensity response parameters. Torkzadeh H; Cates EL Water Res; 2021 Nov; 206():117747. PubMed ID: 34666263 [TBL] [Abstract][Full Text] [Related]
20. Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms. Wood TL; Guha R; Tang L; Geitner M; Kumar M; Wood TK Proc Natl Acad Sci U S A; 2016 May; 113(20):E2802-11. PubMed ID: 27140616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]