These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 37802095)
1. Fluoride-Rich, Organic-Inorganic Gradient Interphase Enabled by Sacrificial Solvation Shells for Reversible Zinc Metal Batteries. Xu W; Li J; Liao X; Zhang L; Zhang X; Liu C; Amine K; Zhao K; Lu J J Am Chem Soc; 2023 Oct; 145(41):22456-22465. PubMed ID: 37802095 [TBL] [Abstract][Full Text] [Related]
2. In Situ Formation of Nitrogen-Rich Solid Electrolyte Interphase and Simultaneous Regulating Solvation Structures for Advanced Zn Metal Batteries. Wang D; Lv D; Liu H; Zhang S; Wang C; Wang C; Yang J; Qian Y Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202212839. PubMed ID: 36321938 [TBL] [Abstract][Full Text] [Related]
3. Bidentate Coordination Enables Anions-Regulated Solvation Structure for Advanced Aqueous Zinc Metal Batteries. Wang D; Li R; Dong J; Bai Z; Wang N; Dou SX; Yang J Angew Chem Int Ed Engl; 2024 Sep; ():e202414117. PubMed ID: 39315791 [TBL] [Abstract][Full Text] [Related]
4. Colloid Electrolyte with Weakly Solvated Structure and Optimized Electrode/Electrolyte Interface for Zinc Metal Batteries. Hu B; Wang Y; Qian X; Chen W; Liang G; Chen J; Zhao J; Li W; Chen T; Fu J ACS Nano; 2023 Jul; 17(13):12734-12746. PubMed ID: 37327363 [TBL] [Abstract][Full Text] [Related]
5. Two-Dimensional Organic-Inorganic Heterostructure as a Multifunctional Protective Layer for High Performance Zinc Metal Anode. Duan F; Jin S; Cheng Y; Yang F; Wei M; Wang M; Zhang X; Yu Y; Yin X; Zhao K; Wei Y; Wu L; Wang Y Nano Lett; 2023 Jan; 23(1):42-50. PubMed ID: 36562792 [TBL] [Abstract][Full Text] [Related]
6. An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes. Liu S; Ji X; Piao N; Chen J; Eidson N; Xu J; Wang P; Chen L; Zhang J; Deng T; Hou S; Jin T; Wan H; Li J; Tu J; Wang C Angew Chem Int Ed Engl; 2021 Feb; 60(7):3661-3671. PubMed ID: 33166432 [TBL] [Abstract][Full Text] [Related]
7. Suppressed Dissolution of Fluorine-Rich SEI Enables Highly Reversible Zinc Metal Anode for Stable Aqueous Zinc-Ion Batteries. Zhang Y; Shen S; Xi K; Li P; Kang Z; Zhao J; Yin D; Su Y; Zhao H; He G; Ding S Angew Chem Int Ed Engl; 2024 Aug; 63(32):e202407067. PubMed ID: 38771481 [TBL] [Abstract][Full Text] [Related]
8. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Cao L; Li D; Pollard T; Deng T; Zhang B; Yang C; Chen L; Vatamanu J; Hu E; Hourwitz MJ; Ma L; Ding M; Li Q; Hou S; Gaskell K; Fourkas JT; Yang XQ; Xu K; Borodin O; Wang C Nat Nanotechnol; 2021 Aug; 16(8):902-910. PubMed ID: 33972758 [TBL] [Abstract][Full Text] [Related]
9. A Dual Organic Solvent Zn-Ion Electrolyte Enables Highly Stable Zn Metal Batteries. He R; Yu F; Wu K; Liu HX; Li Z; Liu HK; Dou SX; Wu C Nano Lett; 2023 Jul; 23(13):6050-6058. PubMed ID: 37367972 [TBL] [Abstract][Full Text] [Related]
10. Electrolyte Engineering with TFA Liang X; Liang Y; Gao Y; Qiao W; Yin D; Huang P; Wang C; Wang L; Cheng Y Small; 2024 Dec; 20(49):e2408162. PubMed ID: 39279610 [TBL] [Abstract][Full Text] [Related]
11. A Synergistic Strategy of Organic Molecules Introduced a High Zn Wang N; Zhang Y; Yuan J; Hu L; Sun M; Li Z; Yao X; Weng X; Jia C ACS Appl Mater Interfaces; 2022 Oct; 14(42):48081-48090. PubMed ID: 36222419 [TBL] [Abstract][Full Text] [Related]
12. Engineering Fluorine-rich Double Protective Layer on Zn Anode for Highly Reversible Aqueous Zinc-ion Batteries. Li T; Hu S; Wang C; Wang D; Xu M; Chang C; Xu X; Han C Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202314883. PubMed ID: 37924309 [TBL] [Abstract][Full Text] [Related]
13. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Qiu H; Du X; Zhao J; Wang Y; Ju J; Chen Z; Hu Z; Yan D; Zhou X; Cui G Nat Commun; 2019 Nov; 10(1):5374. PubMed ID: 31772177 [TBL] [Abstract][Full Text] [Related]
14. An efficient electrolyte additive of 1,3,6-hexanetricarbonitrile for high performance aqueous zinc-ion batteries. Wang R; Liu L; Huang S; Wu Y; Chen X; Liang Z; Xu J J Colloid Interface Sci; 2023 Sep; 646():950-958. PubMed ID: 37235940 [TBL] [Abstract][Full Text] [Related]
15. Inorganic Hybrid Interfacial Layer for a Stable Zinc Metal Anode. Hou Z; Ma H; Tao H; Yang XL ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38037832 [TBL] [Abstract][Full Text] [Related]
16. Stabilizing Zinc Electrodes with a Vanillin Additive in Mild Aqueous Electrolytes. Zhao K; Liu F; Fan G; Liu J; Yu M; Yan Z; Zhang N; Cheng F ACS Appl Mater Interfaces; 2021 Oct; 13(40):47650-47658. PubMed ID: 34586779 [TBL] [Abstract][Full Text] [Related]
17. Synergistic Cation Solvation Reorganization and Fluorinated Interphase for High Reversibility and Utilization of Zinc Metal Anode. Yang W; Wu G; Zhu R; Choe YK; Sun J; Yang Y; Yang H; Yoo E ACS Nano; 2023 Dec; 17(24):25335-25347. PubMed ID: 38054998 [TBL] [Abstract][Full Text] [Related]
18. Electrokinetic-Driven Fast Ion Delivery for Reversible Aqueous Zinc Metal Batteries with High Capacity. Kim S; Heo J; Kim R; Lee JH; Seo J; Yoon S; Lee H; Kim SJ; Kim HT Small; 2021 May; 17(21):e2008059. PubMed ID: 33882616 [TBL] [Abstract][Full Text] [Related]
19. Robust bilayer solid electrolyte interphase for Zn electrode with high utilization and efficiency. Meng Y; Wang M; Wang J; Huang X; Zhou X; Sajid M; Xie Z; Luo R; Zhu Z; Zhang Z; Khan NA; Wang Y; Li Z; Chen W Nat Commun; 2024 Sep; 15(1):8431. PubMed ID: 39343779 [TBL] [Abstract][Full Text] [Related]
20. Panthenol Additives with Multiple Coordination Sites Induce Uniform Zinc Deposition and Inhibited Side Reactions for High Performance Aqueous Zinc Metal Battery. Luo P; Yu G; Zhang W; Huang Z; Wang Y; Zhu D; Chao F; Wang Y; Zhong W; Wang Z; Dong S; An Q Adv Sci (Weinh); 2024 Sep; 11(35):e2402074. PubMed ID: 39033536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]