BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37802574)

  • 1. Steroid 5β-reductase (AKR1D1): Purification and characterization.
    Penning TM
    Methods Enzymol; 2023; 689():277-301. PubMed ID: 37802574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of disease associated point mutations on 5β-reductase (AKR1D1) enzyme function.
    Mindnich R; Drury JE; Penning TM
    Chem Biol Interact; 2011 May; 191(1-3):250-4. PubMed ID: 21185810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5β-Reduced steroids and human Δ(4)-3-ketosteroid 5β-reductase (AKR1D1).
    Chen M; Penning TM
    Steroids; 2014 May; 83():17-26. PubMed ID: 24513054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate of steroid double-bond reduction catalysed by the human steroid 5β-reductase (AKR1D1) is sensitive to steroid structure: implications for steroid metabolism and bile acid synthesis.
    Jin Y; Chen M; Penning TM
    Biochem J; 2014 Aug; 462(1):163-71. PubMed ID: 24894951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism.
    Rižner TL; Penning TM
    Steroids; 2014 Jan; 79():49-63. PubMed ID: 24189185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate specificity and inhibitor analyses of human steroid 5β-reductase (AKR1D1).
    Chen M; Drury JE; Penning TM
    Steroids; 2011 Apr; 76(5):484-90. PubMed ID: 21255593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of disease-related 5beta-reductase (AKR1D1) mutations reveals their potential to cause bile acid deficiency.
    Drury JE; Mindnich R; Penning TM
    J Biol Chem; 2010 Aug; 285(32):24529-37. PubMed ID: 20522910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereospecific reduction of 5β-reduced steroids by human ketosteroid reductases of the AKR (aldo-keto reductase) superfamily: role of AKR1C1-AKR1C4 in the metabolism of testosterone and progesterone via the 5β-reductase pathway.
    Jin Y; Mesaros AC; Blair IA; Penning TM
    Biochem J; 2011 Jul; 437(1):53-61. PubMed ID: 21521174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human and murine steroid 5β-reductases (AKR1D1 and AKR1D4): insights into the role of the catalytic glutamic acid.
    Chen M; Wangtrakuldee P; Zang T; Duan L; Gathercole LL; Tomlinson JW; Penning TM
    Chem Biol Interact; 2019 May; 305():163-170. PubMed ID: 30928400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-Depth Dissection of the P133R Mutation in Steroid 5β-Reductase (AKR1D1): A Molecular Basis of Bile Acid Deficiency.
    Chen M; Jin Y; Penning TM
    Biochemistry; 2015 Oct; 54(41):6343-51. PubMed ID: 26418565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and catalytic mechanism of human steroid 5beta-reductase (AKR1D1).
    Di Costanzo L; Drury JE; Christianson DW; Penning TM
    Mol Cell Endocrinol; 2009 Mar; 301(1-2):191-8. PubMed ID: 18848863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of human steroid 5β-reductase (AKR1D1) into 3β-hydroxysteroid dehydrogenase by single point mutation E120H: example of perfect enzyme engineering.
    Chen M; Drury JE; Christianson DW; Penning TM
    J Biol Chem; 2012 May; 287(20):16609-22. PubMed ID: 22437839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes.
    Penning TM; Wangtrakuldee P; Auchus RJ
    Endocr Rev; 2019 Apr; 40(2):447-475. PubMed ID: 30137266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinguishing primary from secondary Δ(4) -3-oxosteroid 5β-reductase (SRD5B1, AKR1D1) deficiency by urinary steroid analysis.
    Yanagi T; Mizuochi T; Homma K; Ueki I; Seki Y; Hasegawa T; Takei H; Nittono H; Kurosawa T; Matsuishi T; Kimura A
    Clin Endocrinol (Oxf); 2015 Mar; 82(3):346-51. PubMed ID: 25154774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rate-determining steps of aldo-keto reductases (AKRs), a study on human steroid 5β-reductase (AKR1D1).
    Chen M; Jin Y; Penning TM
    Chem Biol Interact; 2015 Jun; 234():360-5. PubMed ID: 25500266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Feedback Regulation of Δ4-3-Oxosteroid 5β-Reductase Expression by Bile Acids.
    Valanejad L; Nadolny C; Shiffka S; Chen Y; You S; Deng R
    PLoS One; 2017; 12(1):e0170960. PubMed ID: 28125709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of human liver Delta4-3-ketosteroid 5beta-reductase (AKR1D1) and implications for substrate binding and catalysis.
    Di Costanzo L; Drury JE; Penning TM; Christianson DW
    J Biol Chem; 2008 Jun; 283(24):16830-9. PubMed ID: 18407998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Germline Mutations in Steroid Metabolizing Enzymes: A Focus on Steroid Transforming Aldo-Keto Reductases.
    Detlefsen AJ; Paulukinas RD; Penning TM
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysregulation of Δ
    Valanejad L; Ghareeb M; Shiffka S; Nadolny C; Chen Y; Guo L; Verma R; You S; Akhlaghi F; Deng R
    Mol Cell Endocrinol; 2018 Jul; 470():127-141. PubMed ID: 29024782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering steroid hormone specificity into aldo-keto reductases.
    Penning TM; Ma H; Jez JM
    Chem Biol Interact; 2001 Jan; 130-132(1-3):659-71. PubMed ID: 11306084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.