These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37802691)

  • 1. Modeling lignin biosynthesis: a pathway to renewable chemicals.
    Rao X; Barros J
    Trends Plant Sci; 2024 May; 29(5):546-559. PubMed ID: 37802691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of novel lignin in biomass crops.
    Vanholme R; Morreel K; Darrah C; Oyarce P; Grabber JH; Ralph J; Boerjan W
    New Phytol; 2012 Dec; 196(4):978-1000. PubMed ID: 23035778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flux modeling for monolignol biosynthesis.
    Wang JP; Matthews ML; Naik PP; Williams CM; Ducoste JJ; Sederoff RR; Chiang VL
    Curr Opin Biotechnol; 2019 Apr; 56():187-192. PubMed ID: 30557780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modeling of monolignol biosynthesis in Populus xylem.
    Lee Y; Voit EO
    Math Biosci; 2010 Nov; 228(1):78-89. PubMed ID: 20816867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignin valorization: improving lignin processing in the biorefinery.
    Ragauskas AJ; Beckham GT; Biddy MJ; Chandra R; Chen F; Davis MF; Davison BH; Dixon RA; Gilna P; Keller M; Langan P; Naskar AK; Saddler JN; Tschaplinski TJ; Tuskan GA; Wyman CE
    Science; 2014 May; 344(6185):1246843. PubMed ID: 24833396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks.
    Poovaiah CR; Nageswara-Rao M; Soneji JR; Baxter HL; Stewart CN
    Plant Biotechnol J; 2014 Dec; 12(9):1163-73. PubMed ID: 25051990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency.
    Eudes A; Sathitsuksanoh N; Baidoo EE; George A; Liang Y; Yang F; Singh S; Keasling JD; Simmons BA; Loqué D
    Plant Biotechnol J; 2015 Dec; 13(9):1241-50. PubMed ID: 25583257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production.
    Weng JK; Li X; Bonawitz ND; Chapple C
    Curr Opin Biotechnol; 2008 Apr; 19(2):166-72. PubMed ID: 18403196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of a bacterial 3-dehydroshikimate dehydratase (QsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.).
    Hao Z; Yogiswara S; Wei T; Benites VT; Sinha A; Wang G; Baidoo EEK; Ronald PC; Scheller HV; Loqué D; Eudes A
    BMC Plant Biol; 2021 Jan; 21(1):56. PubMed ID: 33478381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability.
    Grabber JH; Schatz PF; Kim H; Lu F; Ralph J
    BMC Plant Biol; 2010 Jun; 10():114. PubMed ID: 20565789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignins of bioenergy crops: a review?
    Guragain YN; Herrera AI; Vadlani PV; Prakash O
    Nat Prod Commun; 2015 Jan; 10(1):201-8. PubMed ID: 25920245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the impact of the 4CL enzyme complex on the robustness of monolignol biosynthesis using metabolic pathway analysis.
    Naik P; Wang JP; Sederoff R; Chiang V; Williams C; Ducoste JJ
    PLoS One; 2018; 13(3):e0193896. PubMed ID: 29509777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redesigning plant cell walls for the biomass-based bioeconomy.
    Carpita NC; McCann MC
    J Biol Chem; 2020 Oct; 295(44):15144-15157. PubMed ID: 32868456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabling Lignin Valorization Through Integrated Advances in Plant Biology and Biorefining.
    Dixon RA; Puente-Urbina A; Beckham GT; Román-Leshkov Y
    Annu Rev Plant Biol; 2024 Jul; 75(1):239-263. PubMed ID: 39038247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative analysis of transgenic alfalfa (Medicago sativa L.) suggests new metabolic control mechanisms for monolignol biosynthesis.
    Lee Y; Chen F; Gallego-Giraldo L; Dixon RA; Voit EO
    PLoS Comput Biol; 2011 May; 7(5):e1002047. PubMed ID: 21625579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulatory role of shikimate in plant phenylalanine metabolism.
    Adams ZP; Ehlting J; Edwards R
    J Theor Biol; 2019 Feb; 462():158-170. PubMed ID: 30412698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20224547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon inhibits cadmium uptake by regulating the genes associated with the lignin biosynthetic pathway and plant hormone signal transduction in maize plants.
    Shah T; Khan Z; Khan SR; Imran A; Asad M; Ahmad A; Ahmad P
    Environ Sci Pollut Res Int; 2023 Dec; 30(59):123996-124009. PubMed ID: 37995035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lignin toolbox of the model grass Setaria viridis.
    Ferreira SS; Simões MS; Carvalho GG; de Lima LGA; Svartman RMA; Cesarino I
    Plant Mol Biol; 2019 Oct; 101(3):235-255. PubMed ID: 31254267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.