These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37802691)

  • 21. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.
    Trumbo JL; Zhang B; Stewart CN
    Plant Biotechnol J; 2015 Apr; 13(3):337-54. PubMed ID: 25707745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in Sorghum bicolor.
    Scully ED; Gries T; Sarath G; Palmer NA; Baird L; Serapiglia MJ; Dien BS; Boateng AA; Ge Z; Funnell-Harris DL; Twigg P; Clemente TE; Sattler SE
    Plant J; 2016 Feb; 85(3):378-95. PubMed ID: 26712107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of renewable deep eutectic solvents with engineered biomass to achieve a closed-loop biorefinery.
    Kim KH; Eudes A; Jeong K; Yoo CG; Kim CS; Ragauskas A
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13816-13824. PubMed ID: 31235605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lignin biosynthesis studies in plant tissue cultures.
    Kärkönen A; Koutaniemi S
    J Integr Plant Biol; 2010 Feb; 52(2):176-85. PubMed ID: 20377679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lignin biosynthesis: old roads revisited and new roads explored.
    Dixon RA; Barros J
    Open Biol; 2019 Dec; 9(12):190215. PubMed ID: 31795915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic conversion of lignin into renewable chemicals.
    Bugg TD; Rahmanpour R
    Curr Opin Chem Biol; 2015 Dec; 29():10-7. PubMed ID: 26121945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic engineering of 2-phenylethanol pathway producing fragrance chemical and reducing lignin in Arabidopsis.
    Qi G; Wang D; Yu L; Tang X; Chai G; He G; Ma W; Li S; Kong Y; Fu C; Zhou G
    Plant Cell Rep; 2015 Aug; 34(8):1331-42. PubMed ID: 25895734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1.
    Van Acker R; Déjardin A; Desmet S; Hoengenaert L; Vanholme R; Morreel K; Laurans F; Kim H; Santoro N; Foster C; Goeminne G; Légée F; Lapierre C; Pilate G; Ralph J; Boerjan W
    Plant Physiol; 2017 Nov; 175(3):1018-1039. PubMed ID: 28878036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A trashed treasure: Lignin could become a large and renewable source of organic compounds for the chemical industry to replace fossil fuel-based chemicals: Lignin could become a large and renewable source of organic compounds for the chemical industry to replace fossil fuel-based chemicals.
    Vigh M
    EMBO Rep; 2023 May; 24(5):e57103. PubMed ID: 36947364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Label-free in situ imaging of lignification in plant cell walls.
    Schmidt M; Perera P; Schwartzberg AM; Adams PD; Schuck PJ
    J Vis Exp; 2010 Nov; (45):. PubMed ID: 21085100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering of plant cell walls for enhanced biofuel production.
    Loqué D; Scheller HV; Pauly M
    Curr Opin Plant Biol; 2015 Jun; 25():151-61. PubMed ID: 26051036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modifying crops to increase cell wall digestibility.
    Jung HJ; Samac DA; Sarath G
    Plant Sci; 2012 Apr; 185-186():65-77. PubMed ID: 22325867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lignins: Biosynthesis and Biological Functions in Plants.
    Liu Q; Luo L; Zheng L
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29364145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BLISS: Shining a light on lignification in plants.
    Simon C; Lion C; Huss B; Blervacq AS; Spriet C; Guérardel Y; Biot C; Hawkins S
    Plant Signal Behav; 2017 Aug; 12(8):e1359366. PubMed ID: 28786751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic manipulation of lignocellulosic biomass for bioenergy.
    Wang P; Dudareva N; Morgan JA; Chapple C
    Curr Opin Chem Biol; 2015 Dec; 29():32-9. PubMed ID: 26342806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lignin engineering to improve saccharification and digestibility in grasses.
    Halpin C
    Curr Opin Biotechnol; 2019 Apr; 56():223-229. PubMed ID: 30909119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lignification in sugarcane: biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content.
    Bottcher A; Cesarino I; Santos AB; Vicentini R; Mayer JL; Vanholme R; Morreel K; Goeminne G; Moura JC; Nobile PM; Carmello-Guerreiro SM; Anjos IA; Creste S; Boerjan W; Landell MG; Mazzafera P
    Plant Physiol; 2013 Dec; 163(4):1539-57. PubMed ID: 24144790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase.
    Cai Y; Zhang K; Kim H; Hou G; Zhang X; Yang H; Feng H; Miller L; Ralph J; Liu CJ
    Nat Commun; 2016 Jun; 7():11989. PubMed ID: 27349324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional analysis of metabolic channeling and regulation in lignin biosynthesis: a computational approach.
    Lee Y; Escamilla-Treviño L; Dixon RA; Voit EO
    PLoS Comput Biol; 2012; 8(11):e1002769. PubMed ID: 23144605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide analysis of general phenylpropanoid and monolignol-specific metabolism genes in sugarcane.
    Jardim-Messeder D; Felix-Cordeiro T; Barzilai L; de Souza-Vieira Y; Galhego V; Bastos GA; Valente-Almeida G; Aiube YRA; Faria-Reis A; Corrêa RL; Sachetto-Martins G
    Funct Integr Genomics; 2021 Jan; 21(1):73-99. PubMed ID: 33404914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.