These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 37802953)

  • 21. Entangling logical qubits with lattice surgery.
    Erhard A; Poulsen Nautrup H; Meth M; Postler L; Stricker R; Stadler M; Negnevitsky V; Ringbauer M; Schindler P; Briegel HJ; Blatt R; Friis N; Monz T
    Nature; 2021 Jan; 589(7841):220-224. PubMed ID: 33442044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique.
    Takeda S; Mizuta T; Fuwa M; van Loock P; Furusawa A
    Nature; 2013 Aug; 500(7462):315-8. PubMed ID: 23955230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-speed linear optics quantum computing using active feed-forward.
    Prevedel R; Walther P; Tiefenbacher F; Böhi P; Kaltenbaek R; Jennewein T; Zeilinger A
    Nature; 2007 Jan; 445(7123):65-9. PubMed ID: 17203057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental deterministic correction of qubit loss.
    Stricker R; Vodola D; Erhard A; Postler L; Meth M; Ringbauer M; Schindler P; Monz T; Müller M; Blatt R
    Nature; 2020 Sep; 585(7824):207-210. PubMed ID: 32908267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resource-efficient fault-tolerant one-way quantum repeater with code concatenation.
    Wo KJ; Avis G; Rozpędek F; Mor-Ruiz MF; Pieplow G; Schröder T; Jiang L; Sørensen AS; Borregaard J
    npj Quantum Inf; 2023; 9(1):123. PubMed ID: 38665254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noise Threshold and Resource Cost of Fault-Tolerant Quantum Computing with Majorana Fermions in Hybrid Systems.
    Li Y
    Phys Rev Lett; 2016 Sep; 117(12):120403. PubMed ID: 27689257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.
    Menicucci NC
    Phys Rev Lett; 2014 Mar; 112(12):120504. PubMed ID: 24724639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cluster-state quantum computing enhanced by high-fidelity generalized measurements.
    Biggerstaff DN; Kaltenbaek R; Hamel DR; Weihs G; Rudolph T; Resch KJ
    Phys Rev Lett; 2009 Dec; 103(24):240504. PubMed ID: 20366191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Encoded-Fusion-Based Quantum Computation for High Thresholds with Linear Optics.
    Song W; Kang N; Kim YS; Lee SW
    Phys Rev Lett; 2024 Aug; 133(5):050605. PubMed ID: 39159083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coherent spin-state transfer via Heisenberg exchange.
    Kandel YP; Qiao H; Fallahi S; Gardner GC; Manfra MJ; Nichol JM
    Nature; 2019 Sep; 573(7775):553-557. PubMed ID: 31554982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. No-go theorem for passive single-rail linear optical quantum computing.
    Wu LA; Walther P; Lidar DA
    Sci Rep; 2013; 3():1394. PubMed ID: 23462824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fault-Tolerant Logical Gates in the IBM Quantum Experience.
    Harper R; Flammia ST
    Phys Rev Lett; 2019 Mar; 122(8):080504. PubMed ID: 30932564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays.
    Wu Y; Kolkowitz S; Puri S; Thompson JD
    Nat Commun; 2022 Aug; 13(1):4657. PubMed ID: 35945218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fault-tolerant linear optical quantum computing with small-amplitude coherent States.
    Lund AP; Ralph TC; Haselgrove HL
    Phys Rev Lett; 2008 Jan; 100(3):030503. PubMed ID: 18232954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implementing a strand of a scalable fault-tolerant quantum computing fabric.
    Chow JM; Gambetta JM; Magesan E; Abraham DW; Cross AW; Johnson BR; Masluk NA; Ryan CA; Smolin JA; Srinivasan SJ; Steffen M
    Nat Commun; 2014 Jun; 5():4015. PubMed ID: 24958160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Testing a quantum error-correcting code on various platforms.
    Guo Q; Zhao YY; Grassl M; Nie X; Xiang GY; Xin T; Yin ZQ; Zeng B
    Sci Bull (Beijing); 2021 Jan; 66(1):29-35. PubMed ID: 36654309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Demonstration of fault-tolerant universal quantum gate operations.
    Postler L; Heuβen S; Pogorelov I; Rispler M; Feldker T; Meth M; Marciniak CD; Stricker R; Ringbauer M; Blatt R; Schindler P; Müller M; Monz T
    Nature; 2022 May; 605(7911):675-680. PubMed ID: 35614250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum Error Correction with Only Two Extra Qubits.
    Chao R; Reichardt BW
    Phys Rev Lett; 2018 Aug; 121(5):050502. PubMed ID: 30118291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental quantum coding against qubit loss error.
    Lu CY; Gao WB; Zhang J; Zhou XQ; Yang T; Pan JW
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11050-4. PubMed ID: 18682562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Quantum Error Correction of Dephasing Induced by a Common Fluctuator.
    Layden D; Chen M; Cappellaro P
    Phys Rev Lett; 2020 Jan; 124(2):020504. PubMed ID: 32004019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.