These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 37803000)
1. A pharmacophore-guided deep learning approach for bioactive molecular generation. Zhu H; Zhou R; Cao D; Tang J; Li M Nat Commun; 2023 Oct; 14(1):6234. PubMed ID: 37803000 [TBL] [Abstract][Full Text] [Related]
2. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers. Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054 [TBL] [Abstract][Full Text] [Related]
3. Strategies for Design of Molecular Structures with a Desired Pharmacophore Using Deep Reinforcement Learning. Yoshimori A; Kawasaki E; Kanai C; Tasaka T Chem Pharm Bull (Tokyo); 2020; 68(3):227-233. PubMed ID: 32115529 [TBL] [Abstract][Full Text] [Related]
4. MTMol-GPT: De novo multi-target molecular generation with transformer-based generative adversarial imitation learning. Ai C; Yang H; Liu X; Dong R; Ding Y; Guo F PLoS Comput Biol; 2024 Jun; 20(6):e1012229. PubMed ID: 38924082 [TBL] [Abstract][Full Text] [Related]
5. Deep Generation Model Guided by the Docking Score for Active Molecular Design. Yang Y; Hsieh CY; Kang Y; Hou T; Liu H; Yao X J Chem Inf Model; 2023 May; 63(10):2983-2991. PubMed ID: 37163364 [TBL] [Abstract][Full Text] [Related]
6. De Novo Drug Design Using Transformer-Based Machine Translation and Reinforcement Learning of an Adaptive Monte Carlo Tree Search. Ang D; Rakovski C; Atamian HS Pharmaceuticals (Basel); 2024 Jan; 17(2):. PubMed ID: 38399376 [TBL] [Abstract][Full Text] [Related]
7. Integrating pharmacophore model and deep learning for activity prediction of molecules with BRCA1 gene. Hadiby S; Ben Ali YM J Bioinform Comput Biol; 2024 Feb; 22(1):2450003. PubMed ID: 38567386 [TBL] [Abstract][Full Text] [Related]
8. RELATION: A Deep Generative Model for Structure-Based De Novo Drug Design. Wang M; Hsieh CY; Wang J; Wang D; Weng G; Shen C; Yao X; Bing Z; Li H; Cao D; Hou T J Med Chem; 2022 Jul; 65(13):9478-9492. PubMed ID: 35713420 [TBL] [Abstract][Full Text] [Related]
9. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study. Thomas M; Smith RT; O'Boyle NM; de Graaf C; Bender A J Cheminform; 2021 May; 13(1):39. PubMed ID: 33985583 [TBL] [Abstract][Full Text] [Related]
10. De novo generation of dual-target ligands using adversarial training and reinforcement learning. Lu F; Li M; Min X; Li C; Zeng X Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338 [TBL] [Abstract][Full Text] [Related]
11. De Novo Molecule Design by Translating from Reduced Graphs to SMILES. Pogány P; Arad N; Genway S; Pickett SD J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594 [TBL] [Abstract][Full Text] [Related]
12. Molecular substructure tree generative model for de novo drug design. Wang S; Song T; Zhang S; Jiang M; Wei Z; Li Z Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039853 [TBL] [Abstract][Full Text] [Related]
13. De novo drug design by iterative multiobjective deep reinforcement learning with graph-based molecular quality assessment. Fang Y; Pan X; Shen HB Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36961341 [TBL] [Abstract][Full Text] [Related]
14. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation. Xiong Y; Wang Y; Wang Y; Li C; Yusong P; Wu J; Wang Y; Gu L; Butch CJ J Comput Aided Mol Des; 2023 Nov; 37(11):507-517. PubMed ID: 37550462 [TBL] [Abstract][Full Text] [Related]
15. Combiphore (Structure and Ligand Based Pharmacophore) - Approach for the Design of GPR40 Modulators in the Management of Diabetes. Gajjar KA; Gajjar AK Curr Drug Discov Technol; 2020; 17(2):233-247. PubMed ID: 30306872 [TBL] [Abstract][Full Text] [Related]
16. Prospective de novo drug design with deep interactome learning. Atz K; Cotos L; Isert C; Håkansson M; Focht D; Hilleke M; Nippa DF; Iff M; Ledergerber J; Schiebroek CCG; Romeo V; Hiss JA; Merk D; Schneider P; Kuhn B; Grether U; Schneider G Nat Commun; 2024 Apr; 15(1):3408. PubMed ID: 38649351 [TBL] [Abstract][Full Text] [Related]
17. DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning. Liu X; Ye K; van Vlijmen HWT; IJzerman AP; van Westen GJP J Cheminform; 2023 Feb; 15(1):24. PubMed ID: 36803659 [TBL] [Abstract][Full Text] [Related]
19. Identification of selective MMP-9 inhibitors through multiple e-pharmacophore, ligand-based pharmacophore, molecular docking, and density functional theory approaches. Jana S; Singh SK J Biomol Struct Dyn; 2019 Mar; 37(4):944-965. PubMed ID: 29475408 [TBL] [Abstract][Full Text] [Related]
20. DeepScaffold: A Comprehensive Tool for Scaffold-Based De Novo Drug Discovery Using Deep Learning. Li Y; Hu J; Wang Y; Zhou J; Zhang L; Liu Z J Chem Inf Model; 2020 Jan; 60(1):77-91. PubMed ID: 31809029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]