BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37803030)

  • 1. Catalytic enantioselective reductive alkynylation of amides enables one-pot syntheses of pyrrolidine, piperidine and indolizidine alkaloids.
    Xu FF; Chen JQ; Shao DY; Huang PQ
    Nat Commun; 2023 Oct; 14(1):6251. PubMed ID: 37803030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Author Correction: Catalytic enantioselective reductive alkynylation of amides enables one-pot syntheses of pyrrolidine, piperidine and indolizidine alkaloids.
    Xu FF; Chen JQ; Shao DY; Huang PQ
    Nat Commun; 2024 Feb; 15(1):1836. PubMed ID: 38418446
    [No Abstract]   [Full Text] [Related]  

  • 3. Chiral Pd-Catalyzed Enantioselective Syntheses of Various N-C Axially Chiral Compounds and Their Synthetic Applications.
    Kitagawa O
    Acc Chem Res; 2021 Feb; 54(3):719-730. PubMed ID: 33481580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Step Catalytic Asymmetric Total Syntheses of 13-Methyltetrahydroprotoberberine Alkaloids.
    Zhou S; Tong R
    Org Lett; 2017 Apr; 19(7):1594-1597. PubMed ID: 28346788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multicatalysis protocol enables direct and versatile enantioselective reductive transformations of secondary amides.
    Chen H; Wu ZZ; Shao DY; Huang PQ
    Sci Adv; 2022 Nov; 8(47):eade3431. PubMed ID: 36417504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric Synthesis of Propargylic α-Stereogenic Tertiary Amines by Reductive Alkynylation of Tertiary Amides Using Ir/Cu Tandem Catalysis.
    Agrawal T; Perez-Morales KD; Cort JA; Sieber JD
    J Org Chem; 2022 May; 87(9):6387-6392. PubMed ID: 35435681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective Rhodium-Catalyzed Allylation of Aliphatic Imines: Synthesis of Chiral C-Aliphatic Homoallylic Amines.
    Li WS; Kuo TS; Hsieh MC; Tsai MK; Wu PY; Wu HL
    Org Lett; 2020 Jul; 22(14):5675-5679. PubMed ID: 32628021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concise Total Synthesis of (-)-Quinocarcin Enabled by Catalytic Enantioselective Reductive 1,3-Dipolar Cycloaddition of Secondary Amides.
    Ji KL; He SF; Xu DD; He WX; Zheng JF; Huang PQ
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202302832. PubMed ID: 37025034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective total syntheses of several bioactive natural products based on the development of practical asymmetric catalysis.
    Ohshima T
    Chem Pharm Bull (Tokyo); 2004 Sep; 52(9):1031-52. PubMed ID: 15340187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concise enantioselective synthesis of 3,5-dialkyl-substituted indolizidine alkaloids via sequential cross-metathesis-double-reductive cyclization.
    Randl S; Blechert S
    J Org Chem; 2003 Nov; 68(23):8879-82. PubMed ID: 14604357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Synthetic Methodologies via Catalytic Enantioselective Synthesis of 3,3-Disubstituted Oxindoles.
    Cao ZY; Zhou F; Zhou J
    Acc Chem Res; 2018 Jun; 51(6):1443-1454. PubMed ID: 29808678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantio- and Regioselective Copper-Catalyzed 1,2-Dearomatization of Pyridines.
    Pappoppula M; Olsen KL; Ketelboeter DR; Aponick A
    Angew Chem Int Ed Engl; 2023 Nov; 62(48):e202312967. PubMed ID: 37820350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicomponent Hetero-[4 + 2] Cycloaddition/Allylboration Reaction: From Natural Product Synthesis to Drug Discovery.
    Hall DG; Rybak T; Verdelet T
    Acc Chem Res; 2016 Nov; 49(11):2489-2500. PubMed ID: 27753496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective double manipulation of tetrahydroisoquinolines with terminal alkynes and aldehydes under copper(I) catalysis.
    Lin W; Cao T; Fan W; Han Y; Kuang J; Luo H; Miao B; Tang X; Yu Q; Yuan W; Zhang J; Zhu C; Ma S
    Angew Chem Int Ed Engl; 2014 Jan; 53(1):277-81. PubMed ID: 24375740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile one-pot reductive alkylation of lactams/amides via amide activation: application to the concise syntheses of bioactive alkaloids (±)-bgugaine, (±)-coniine, (+)-preussin, and (-)-cassine.
    Xiao KJ; Wang Y; Ye KY; Huang PQ
    Chemistry; 2010 Nov; 16(43):12792-6. PubMed ID: 20938943
    [No Abstract]   [Full Text] [Related]  

  • 16. Catalytic Asymmetric Total Syntheses of Naturally Occurring Amarylidaceae Alkaloids, (-)-Crinine, (-)- epi-Crinine, (-)-Oxocrinine, (+)- epi-Elwesine, (+)-Vittatine, and (+)- epi-Vittatine.
    Das MK; Kumar N; Bisai A
    Org Lett; 2018 Aug; 20(15):4421-4424. PubMed ID: 30028625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Asymmetric Alkynylation of 3,4-Dihydro-β-carbolinium Ions Enables Collective Total Syntheses of Indole Alkaloids.
    Liang L; Zhou S; Zhang W; Tong R
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):25135-25142. PubMed ID: 34581483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective Total Synthesis of (-)-Alstoscholarisine A.
    Liang X; Jiang SZ; Wei K; Yang YR
    J Am Chem Soc; 2016 Mar; 138(8):2560-2. PubMed ID: 26882407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Chemistry of Spiroindolenines by Mechanistically-Driven Reaction Development: Asymmetric Pictet-Spengler-type Reactions and Beyond.
    Zheng C; You SL
    Acc Chem Res; 2020 Apr; 53(4):974-987. PubMed ID: 32275392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Chemo- and Enantioselective Transformations of
    Lee Y; Han S; Cho SH
    Acc Chem Res; 2021 Oct; 54(20):3917-3929. PubMed ID: 34612034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.