These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37803057)
1. Observed changes in wet days and dry spells over the IGAD region of eastern Africa. Omay PO; Muthama NJ; Oludhe C; Kinama JM; Artan G; Atheru Z Sci Rep; 2023 Oct; 13(1):16894. PubMed ID: 37803057 [TBL] [Abstract][Full Text] [Related]
2. Intra-growing season dry-wet spell pattern is a pivotal driver of maize yield variability in sub-Saharan Africa. Marcos-Garcia P; Carmona-Moreno C; Pastori M Nat Food; 2024 Sep; 5(9):775-786. PubMed ID: 39285262 [TBL] [Abstract][Full Text] [Related]
3. Association of precipitation extremes and crops production and projecting future extremes using machine learning approaches with CMIP6 data. Khan F; Spöck G; Liou YA; Ali S Environ Sci Pollut Res Int; 2024 Sep; 31(42):54979-54999. PubMed ID: 39218845 [TBL] [Abstract][Full Text] [Related]
4. Projected local rain events due to climate change and the impacts on waterborne diseases in Vancouver, British Columbia, Canada. Chhetri BK; Galanis E; Sobie S; Brubacher J; Balshaw R; Otterstatter M; Mak S; Lem M; Lysyshyn M; Murdock T; Fleury M; Zickfeld K; Zubel M; Clarkson L; Takaro TK Environ Health; 2019 Dec; 18(1):116. PubMed ID: 31888648 [TBL] [Abstract][Full Text] [Related]
5. Multi-century tree-ring precipitation record reveals increasing frequency of extreme dry events in the upper Blue Nile River catchment. Mokria M; Gebrekirstos A; Abiyu A; Van Noordwijk M; Bräuning A Glob Chang Biol; 2017 Dec; 23(12):5436-5454. PubMed ID: 28712116 [TBL] [Abstract][Full Text] [Related]
6. Agronomical analysis of the characteristics of the precipitation (case study: Sabzevar, Iran). Aghajani G Pak J Biol Sci; 2007 Apr; 10(8):1354-9. PubMed ID: 19069944 [TBL] [Abstract][Full Text] [Related]
7. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Arunrat N; Sereenonchai S; Chaowiwat W; Wang C Sci Total Environ; 2022 Feb; 807(Pt 2):150741. PubMed ID: 34627910 [TBL] [Abstract][Full Text] [Related]
8. Global Observations and CMIP6 Simulations of Compound Extremes of Monthly Temperature and Precipitation. Wu Y; Miao C; Sun Y; AghaKouchak A; Shen C; Fan X Geohealth; 2021 May; 5(5):e2021GH000390. PubMed ID: 34027262 [TBL] [Abstract][Full Text] [Related]
9. Late planting has great potential to mitigate the effects of future climate change on Australian rain-fed cotton. Anwar MR; Wang B; Liu L; Waters C Sci Total Environ; 2020 Apr; 714():136806. PubMed ID: 31982770 [TBL] [Abstract][Full Text] [Related]
10. Future precipitation and near surface air-temperature projection using CMIP6 models based on TOPSIS method: case study, Sistan-and-Baluchestan Province of Iran. Pegahfar N Environ Monit Assess; 2023 Nov; 195(12):1548. PubMed ID: 38019299 [TBL] [Abstract][Full Text] [Related]
11. Predicted changes in future precipitation and air temperature across Bangladesh using CMIP6 GCMs. Kamruzzaman M; Wahid S; Shahid S; Alam E; Mainuddin M; Islam HMT; Cho J; Rahman MM; Chandra Biswas J; Thorp KR Heliyon; 2023 May; 9(5):e16274. PubMed ID: 37234666 [TBL] [Abstract][Full Text] [Related]
12. Analysis the characterization of climate change and its impacts on smallholder farmers in Eastern Ethiopia. Asefa Bogale G Heliyon; 2023 Oct; 9(10):e20293. PubMed ID: 37767516 [TBL] [Abstract][Full Text] [Related]
13. HIV/AIDS among pastoralists and refugees in north-east Africa: a neglected problem. Serbessa MK; Mariam DH; Kassa A; Alwan F; Kloos H Afr J AIDS Res; 2016; 15(1):45-54. PubMed ID: 27002357 [TBL] [Abstract][Full Text] [Related]
14. Future changes in the precipitation regime over the Arabian Peninsula with special emphasis on UAE: insights from NEX-GDDP CMIP6 model simulations. Rao KK; Al Mandous A; Al Ebri M; Al Hameli N; Rakib M; Al Kaabi S Sci Rep; 2024 Jan; 14(1):151. PubMed ID: 38168514 [TBL] [Abstract][Full Text] [Related]
15. Projected changes in temperature, precipitation and potential evapotranspiration across Indus River Basin at 1.5-3.0 °C warming levels using CMIP6-GCMs. Mondal SK; Tao H; Huang J; Wang Y; Su B; Zhai J; Jing C; Wen S; Jiang S; Chen Z; Jiang T Sci Total Environ; 2021 Oct; 789():147867. PubMed ID: 34052498 [TBL] [Abstract][Full Text] [Related]
16. The key role of dry days in changing regional climate and precipitation regimes. Polade SD; Pierce DW; Cayan DR; Gershunov A; Dettinger MD Sci Rep; 2014 Mar; 4():4364. PubMed ID: 24621567 [TBL] [Abstract][Full Text] [Related]
17. Spatiotemporal changes in future precipitation of Afghanistan for shared socioeconomic pathways. Rahimi ST; Safari Z; Shahid S; Hayet Khan MM; Ali Z; Ziarh GF; Houmsi MR; Muhammad MKIB; Chung IM; Kim S; Yaseen ZM Heliyon; 2024 Apr; 10(7):e28433. PubMed ID: 38571592 [TBL] [Abstract][Full Text] [Related]
18. Forecasting the Potential Effects of Climate Change on Malaria in the Lake Victoria Basin Using Regionalized Climate Projections. Ototo EN; Ogutu JO; Githeko A; Said MY; Kamau L; Namanya D; Simiyu S; Mutimba S Acta Parasitol; 2022 Dec; 67(4):1535-1563. PubMed ID: 35962265 [TBL] [Abstract][Full Text] [Related]
19. Climate change multi-model projections in CMIP6 scenarios in Central Hokkaido, Japan. Peng S; Wang C; Li Z; Mihara K; Kuramochi K; Toma Y; Hatano R Sci Rep; 2023 Jan; 13(1):230. PubMed ID: 36604582 [TBL] [Abstract][Full Text] [Related]
20. Patterns of rainfall and temperature and their relationships with potential evapotranspiration rates over the period 1981-2022 in parts of central, western, southern, and southwestern Uganda. Ojara MA; Babaousmail H; Aribo L; Namumbya S; Mumo L; Ogwang BA Environ Monit Assess; 2024 Sep; 196(10):898. PubMed ID: 39231835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]