These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37803212)

  • 21. Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades.
    Zhang Z; Xiao J; Wu S; Lv F; Gong J; Jiang L; Yu R; Luo T
    J Digit Imaging; 2020 Aug; 33(4):826-837. PubMed ID: 32040669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning.
    Ubaldi L; Saponaro S; Giuliano A; Talamonti C; Retico A
    Phys Med; 2023 Mar; 107():102538. PubMed ID: 36796177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: a robust, multi-institutional study.
    Ding J; Zhao R; Qiu Q; Chen J; Duan J; Cao X; Yin Y
    Quant Imaging Med Surg; 2022 Feb; 12(2):1517-1528. PubMed ID: 35111644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radiomics Nomogram Building From Multiparametric MRI to Predict Grade in Patients With Glioma: A Cohort Study.
    Wang Q; Li Q; Mi R; Ye H; Zhang H; Chen B; Li Y; Huang G; Xia J
    J Magn Reson Imaging; 2019 Mar; 49(3):825-833. PubMed ID: 30260592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrative nomogram of CT imaging, clinical, and hematological features for survival prediction of patients with locally advanced non-small cell lung cancer.
    Wang L; Dong T; Xin B; Xu C; Guo M; Zhang H; Feng D; Wang X; Yu J
    Eur Radiol; 2019 Jun; 29(6):2958-2967. PubMed ID: 30643940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MRI features can predict EGFR expression in lower grade gliomas: A voxel-based radiomic analysis.
    Li Y; Liu X; Xu K; Qian Z; Wang K; Fan X; Li S; Wang Y; Jiang T
    Eur Radiol; 2018 Jan; 28(1):356-362. PubMed ID: 28755054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MR Imaging of Pediatric Low-Grade Gliomas: Pretherapeutic Differentiation of
    Trasolini A; Erker C; Cheng S; Crowell C; McFadden K; Moineddin R; Sargent MA; Mata-Mbemba D
    AJNR Am J Neuroradiol; 2022 Aug; 43(8):1196-1201. PubMed ID: 35863783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MRI-based radiomics signature and clinical factor for predicting H3K27M mutation in pediatric high-grade gliomas located in the midline of the brain.
    Wu C; Zheng H; Li J; Zhang Y; Duan S; Li Y; Wang D
    Eur Radiol; 2022 Mar; 32(3):1813-1822. PubMed ID: 34655310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature.
    Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T
    Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noninvasive Molecular Subtyping of Pediatric Low-Grade Glioma with Self-Supervised Transfer Learning.
    Tak D; Ye Z; Zapaischykova A; Zha Y; Boyd A; Vajapeyam S; Chopra R; Hayat H; Prabhu SP; Liu KX; Elhalawani H; Nabavizadeh A; Familiar A; Resnick AC; Mueller S; Aerts HJWL; Bandopadhayay P; Ligon KL; Haas-Kogan DA; Poussaint TY; Kann BH
    Radiol Artif Intell; 2024 May; 6(3):e230333. PubMed ID: 38446044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiomic features from dynamic susceptibility contrast perfusion-weighted imaging improve the three-class prediction of molecular subtypes in patients with adult diffuse gliomas.
    Pei D; Guan F; Hong X; Liu Z; Wang W; Qiu Y; Duan W; Wang M; Sun C; Wang W; Wang X; Guo Y; Wang Z; Liu Z; Xing A; Guo Z; Luo L; Liu X; Cheng J; Zhang B; Zhang Z; Yan J
    Eur Radiol; 2023 May; 33(5):3455-3466. PubMed ID: 36853347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the neoadjuvant chemotherapy response in osteosarcoma using the MRI DWI-based machine learning radiomics nomogram.
    Zhang L; Gao Q; Dou Y; Cheng T; Xia Y; Li H; Gao S
    Front Oncol; 2024; 14():1345576. PubMed ID: 38577327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radiomic Analysis of Contrast-Enhanced MRI Predicts DNA Copy-Number Subtype and Outcome in Lower-Grade Gliomas.
    Wan Y; Zhou S; Zhang Y; Deng X; Xu L
    Acad Radiol; 2022 Sep; 29(9):e189-e196. PubMed ID: 34916150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas.
    Lassaletta A; Zapotocky M; Mistry M; Ramaswamy V; Honnorat M; Krishnatry R; Guerreiro Stucklin A; Zhukova N; Arnoldo A; Ryall S; Ling C; McKeown T; Loukides J; Cruz O; de Torres C; Ho CY; Packer RJ; Tatevossian R; Qaddoumi I; Harreld JH; Dalton JD; Mulcahy-Levy J; Foreman N; Karajannis MA; Wang S; Snuderl M; Nageswara Rao A; Giannini C; Kieran M; Ligon KL; Garre ML; Nozza P; Mascelli S; Raso A; Mueller S; Nicolaides T; Silva K; Perbet R; Vasiljevic A; Faure Conter C; Frappaz D; Leary S; Crane C; Chan A; Ng HK; Shi ZF; Mao Y; Finch E; Eisenstat D; Wilson B; Carret AS; Hauser P; Sumerauer D; Krskova L; Larouche V; Fleming A; Zelcer S; Jabado N; Rutka JT; Dirks P; Taylor MD; Chen S; Bartels U; Huang A; Ellison DW; Bouffet E; Hawkins C; Tabori U
    J Clin Oncol; 2017 Sep; 35(25):2934-2941. PubMed ID: 28727518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas.
    Zhao Z; Nie C; Zhao L; Xiao D; Zheng J; Zhang H; Yan P; Jiang X; Zhao H
    Eur Radiol; 2024 Apr; 34(4):2468-2479. PubMed ID: 37812296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prognostic Role of BRAF Mutation in Low-Grade Gliomas: Meta-analysis.
    Kai Z; Dingyang L; Zhuanyi Y
    World Neurosurg; 2021 Mar; 147():42-46. PubMed ID: 33316486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PD-L1 Expression in Pediatric Low-Grade Gliomas Is Independent of BRAF V600E Mutational Status.
    Martin AM; Bell WR; Yuan M; Harris L; Poore B; Arnold A; Engle EL; Asnaghi L; Lim M; Raabe EH; Eberhart CG
    J Neuropathol Exp Neurol; 2020 Jan; 79(1):74-85. PubMed ID: 31819973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.
    Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y
    Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.