These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37803296)

  • 21. Genetic basis of negative heterosis for growth traits in chickens revealed by genome-wide gene expression pattern analysis.
    Mai C; Wen C; Xu Z; Xu G; Chen S; Zheng J; Sun C; Yang N
    J Anim Sci Biotechnol; 2021 Apr; 12(1):52. PubMed ID: 33865443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Post-weaning blood transcriptomic differences between Yorkshire pigs divergently selected for residual feed intake.
    Liu H; Nguyen YT; Nettleton D; Dekkers JC; Tuggle CK
    BMC Genomics; 2016 Jan; 17():73. PubMed ID: 26801403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-Depth Duodenal Transcriptome Survey in Chickens with Divergent Feed Efficiency Using RNA-Seq.
    Yi G; Yuan J; Bi H; Yan W; Yang N; Qu L
    PLoS One; 2015; 10(9):e0136765. PubMed ID: 26418546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene expression analysis of blood, liver, and muscle in cattle divergently selected for high and low residual feed intake.
    Khansefid M; Millen CA; Chen Y; Pryce JE; Chamberlain AJ; Vander Jagt CJ; Gondro C; Goddard ME
    J Anim Sci; 2017 Nov; 95(11):4764-4775. PubMed ID: 29293712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential gene expression in liver of colored broiler chicken divergently selected for residual feed intake.
    Prakash A; Saxena VK; Kumar R; Tomar S; Singh MK; Singh G
    Trop Anim Health Prod; 2021 Jul; 53(3):403. PubMed ID: 34268607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide association studies for feed intake and efficiency in two laying periods of chickens.
    Yuan J; Wang K; Yi G; Ma M; Dou T; Sun C; Qu LJ; Shen M; Qu L; Yang N
    Genet Sel Evol; 2015 Oct; 47():82. PubMed ID: 26475174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic and microbiome analysis of feed efficiency in laying hens.
    Zhou Q; Lan F; Gu S; Li G; Wu G; Yan Y; Li X; Jin J; Wen C; Sun C; Yang N
    Poult Sci; 2023 Apr; 102(4):102393. PubMed ID: 36805401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptome analysis reveals the potential roles of long non-coding RNAs in feed efficiency of chicken.
    Karimi P; Bakhtiarizadeh MR; Salehi A; Izadnia HR
    Sci Rep; 2022 Feb; 12(1):2558. PubMed ID: 35169237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast growing broiler production from genetically different pure lines in Turkey. 2. Broiler traits: growth, feed intake, feed efficiency, livability, body defects and some heterotic effects.
    Erensoy K; Sarıca M
    Trop Anim Health Prod; 2023 Feb; 55(1):61. PubMed ID: 36729243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in feed efficiency of growing pigs.
    Gondret F; Vincent A; Houée-Bigot M; Siegel A; Lagarrigue S; Causeur D; Gilbert H; Louveau I
    BMC Genomics; 2017 Mar; 18(1):244. PubMed ID: 28327084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring Genomic Variants Related to Residual Feed Intake in Local and Commercial Chickens by Whole Genomic Resequencing.
    Liu J; Liu R; Wang J; Zhang Y; Xing S; Zheng M; Cui H; Li Q; Li P; Cui X; Li W; Zhao G; Wen J
    Genes (Basel); 2018 Jan; 9(2):. PubMed ID: 29364149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of divergence in residual feed intake on expression of lipid metabolism-related genes in the liver of meat-type ducks1.
    Jin S; Yang L; Fan X; Wu M; Xu Y; Chen X; Lin Z; Geng Z
    J Anim Sci; 2019 Sep; 97(9):3947-3957. PubMed ID: 31325379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Divergent selection for feed efficiency in pigs altered the duodenum transcriptomic response to feed intake and its DNA methylation profiles.
    Devailly G; Fève K; Saci S; Sarry J; Valière S; Lluch J; Bouchez O; Ravon L; Billon Y; Gilbert H; Riquet J; Beaumont M; Demars J
    Physiol Genomics; 2024 May; 56(5):397-408. PubMed ID: 38497119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptomic differences of genes in the avian target of rapamycin (avTOR) pathway in a divergent line of meat-type chickens selected for feed efficiency.
    Lee J; Aggrey SE
    Genet Mol Res; 2016 Jun; 15(2):. PubMed ID: 27420985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide association study reveals putative role of gga-miR-15a in controlling feed conversion ratio in layer chickens.
    Yuan J; Chen S; Shi F; Wu G; Liu A; Yang N; Sun C
    BMC Genomics; 2017 Sep; 18(1):699. PubMed ID: 28877683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene co-expression networks from RNA sequencing of dairy cattle identifies genes and pathways affecting feed efficiency.
    Salleh SM; Mazzoni G; Løvendahl P; Kadarmideen HN
    BMC Bioinformatics; 2018 Dec; 19(1):513. PubMed ID: 30558534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast growing broiler production from genetically different pure lines in Turkey. 1. Parental traits: growth, feed intake, reproduction, and hatching traits.
    Erensoy K; Sarıca M
    Trop Anim Health Prod; 2022 Sep; 54(5):322. PubMed ID: 36161536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A study of heterosis and recombination loss in crosses of inbred Leghorn lines derived from a common base population.
    Abplanalp H; Okamoto S; Napolitano D; Len RE
    Poult Sci; 1984 Feb; 63(2):234-9. PubMed ID: 6709564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Small networks of expressed genes in the whole blood and relationships to profiles in circulating metabolites provide insights in inter-individual variability of feed efficiency in growing pigs.
    Juigné C; Becker E; Gondret F
    BMC Genomics; 2023 Oct; 24(1):647. PubMed ID: 37891507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Divergent selection for residual feed intake affects the transcriptomic and proteomic profiles of pig skeletal muscle.
    Vincent A; Louveau I; Gondret F; Tréfeu C; Gilbert H; Lefaucheur L
    J Anim Sci; 2015 Jun; 93(6):2745-58. PubMed ID: 26115262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.