These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 37803533)
1. Bactericidal efficacy difference between air and nitrogen cold atmospheric plasma on Bacillus cereus: Inactivation mechanism of Gram-positive bacteria at the cellular and molecular level. Wang Y; Liu Y; Zhao Y; Sun Y; Duan M; Wang H; Dai R; Liu Y; Li X; Jia F Food Res Int; 2023 Nov; 173(Pt 1):113204. PubMed ID: 37803533 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores. van Bokhorst-van de Veen H; Xie H; Esveld E; Abee T; Mastwijk H; Nierop Groot M Food Microbiol; 2015 Feb; 45(Pt A):26-33. PubMed ID: 25481059 [TBL] [Abstract][Full Text] [Related]
3. Subcellular inactivation mechanisms of Pseudomonas aeruginosa treated by cold atmospheric plasma and application on chicken breasts. Zhao Y; Shao L; Jia L; Meng Z; Liu Y; Wang Y; Zou B; Dai R; Li X; Jia F Food Res Int; 2022 Oct; 160():111720. PubMed ID: 36076413 [TBL] [Abstract][Full Text] [Related]
4. Physiological and transcriptional response of Bacillus cereus treated with low-temperature nitrogen gas plasma. Mols M; Mastwijk H; Nierop Groot M; Abee T J Appl Microbiol; 2013 Sep; 115(3):689-702. PubMed ID: 23758316 [TBL] [Abstract][Full Text] [Related]
5. Oxygen and air cold plasma for the inactivation of Bacillus cereus in low-water activity soy powder. Teresa Fernández-Felipe M; Inés Valdez-Narváez M; Martinez A; Rodrigo D Food Res Int; 2024 Oct; 193():114861. PubMed ID: 39160048 [TBL] [Abstract][Full Text] [Related]
6. Regulation of cellular redox homeostasis in Arabidopsis thaliana seedling by atmospheric pressure cold plasma-generated reactive oxygen/nitrogen species. Cui D; Yin Y; Sun H; Wang X; Zhuang J; Wang L; Ma R; Jiao Z Ecotoxicol Environ Saf; 2022 Jul; 240():113703. PubMed ID: 35659700 [TBL] [Abstract][Full Text] [Related]
7. Cold plasma technology: bactericidal effects on Geobacillus stearothermophilus and Bacillus cereus microorganisms. Morris AD; McCombs GB; Akan T; Hynes W; Laroussi M; Tolle SL J Dent Hyg; 2009; 83(2):55-61. PubMed ID: 19470230 [TBL] [Abstract][Full Text] [Related]
8. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Mai-Prochnow A; Clauson M; Hong J; Murphy AB Sci Rep; 2016 Dec; 6():38610. PubMed ID: 27934958 [TBL] [Abstract][Full Text] [Related]
9. Impact of food model (micro)structure on the microbial inactivation efficacy of cold atmospheric plasma. Smet C; Noriega E; Rosier F; Walsh JL; Valdramidis VP; Van Impe JF Int J Food Microbiol; 2017 Jan; 240():47-56. PubMed ID: 27507138 [TBL] [Abstract][Full Text] [Related]
10. Modeling the Inactivation of Muhammad AI; Lv R; Liao X; Chen W; Liu D; Ye X; Chen S; Ding T J Food Prot; 2019 Nov; 82(11):1828-1836. PubMed ID: 31596617 [TBL] [Abstract][Full Text] [Related]
12. Use of Raman Spectroscopy and Phase-Contrast Microscopy To Characterize Cold Atmospheric Plasma Inactivation of Individual Bacterial Spores. Wang S; Doona CJ; Setlow P; Li YQ Appl Environ Microbiol; 2016 Oct; 82(19):5775-84. PubMed ID: 27422840 [TBL] [Abstract][Full Text] [Related]
13. Inactivation of multidrug-resistant pathogens and Yersinia enterocolitica with cold atmospheric-pressure plasma on stainless-steel surfaces. Lis KA; Kehrenberg C; Boulaaba A; von Köckritz-Blickwede M; Binder S; Li Y; Zimmermann JL; Pfeifer Y; Ahlfeld B Int J Antimicrob Agents; 2018 Dec; 52(6):811-818. PubMed ID: 30176354 [TBL] [Abstract][Full Text] [Related]
14. Subcellular mechanism of microbial inactivation during water disinfection by cold atmospheric-pressure plasma. Xu H; Zhu Y; Du M; Wang Y; Ju S; Ma R; Jiao Z Water Res; 2021 Jan; 188():116513. PubMed ID: 33091801 [TBL] [Abstract][Full Text] [Related]
15. Effects of Nitro-Oxidative Stress on Biomolecules: Part 1-Non-Reactive Molecular Dynamics Simulations. Ghasemitarei M; Ghorbi T; Yusupov M; Zhang Y; Zhao T; Shali P; Bogaerts A Biomolecules; 2023 Sep; 13(9):. PubMed ID: 37759771 [TBL] [Abstract][Full Text] [Related]
16. Cold atmospheric plasma (CAP), a novel physicochemical source, induces neural differentiation through cross-talk between the specific RONS cascade and Trk/Ras/ERK signaling pathway. Jang JY; Hong YJ; Lim J; Choi JS; Choi EH; Kang S; Rhim H Biomaterials; 2018 Feb; 156():258-273. PubMed ID: 29222974 [TBL] [Abstract][Full Text] [Related]
17. Synergistic effects of oxidative and acid stress on bacterial membranes of Escherichia coli and Staphylococcus simulans. Xie M; Koch EHW; Walree CAV; Sobota A; Sonnen AFP; Killian JA; Breukink E; Lorent JH Commun Biol; 2024 Sep; 7(1):1161. PubMed ID: 39289481 [TBL] [Abstract][Full Text] [Related]
18. On the evaluation of the antimicrobial effect of grape seed extract and cold atmospheric plasma on the dynamics of Listeria monocytogenes in novel multiphase 3D viscoelastic models. Kitsiou M; Purk L; Ioannou C; Wantock T; Sandison G; Harle T; Gutierrez-Merino J; Klymenko OV; Velliou E Int J Food Microbiol; 2023 Dec; 406():110395. PubMed ID: 37734280 [TBL] [Abstract][Full Text] [Related]
19. The antimicrobial efficacy of remote cold atmospheric plasma effluent against single and mixed bacterial biofilms of varying age. El Kadri H; Costello KM; Thomas P; Wantock T; Sandison G; Harle T; Fabris AL; Gutierrez-Merino J; Velliou EG Food Res Int; 2021 Mar; 141():110126. PubMed ID: 33641993 [TBL] [Abstract][Full Text] [Related]
20. Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure. Dezest M; Bulteau AL; Quinton D; Chavatte L; Le Bechec M; Cambus JP; Arbault S; Nègre-Salvayre A; Clément F; Cousty S PLoS One; 2017; 12(3):e0173618. PubMed ID: 28358809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]