These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37803600)

  • 1. Spontaneously growing fungi on the surface and processing areas of matured sheep ham and volatile compounds produced.
    Santos de Almeida T; Alves Dos Santos B; Stefanello A; Duarte Dos Santos I; Copetti Fracari J; Silva M; Giongo C; Wagner R; Silveira Nalério E; Venturini Copetti M
    Food Res Int; 2023 Nov; 173(Pt 1):113287. PubMed ID: 37803600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moulds isolated from Istrian dried ham at the pre-ripening and ripening level.
    Comi G; Orlic S; Redzepovic S; Urso R; Iacumin L
    Int J Food Microbiol; 2004 Oct; 96(1):29-34. PubMed ID: 15358503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycobiota and mycotoxins in Portuguese pork, goat and sheep dry-cured hams.
    Rodrigues P; Silva D; Costa P; Abrunhosa L; Venâncio A; Teixeira A
    Mycotoxin Res; 2019 Nov; 35(4):405-412. PubMed ID: 31494812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of a selected fungal population to the volatile compounds on dry-cured ham.
    Martín A; Córdoba JJ; Aranda E; Córdoba MG; Asensio MA
    Int J Food Microbiol; 2006 Jul; 110(1):8-18. PubMed ID: 16564595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the mycobiota of three plants manufacturing Culatello (a typical Italian meat product).
    Scaramuzza N; Diaferia C; Berni E
    Int J Food Microbiol; 2015 Jun; 203():78-85. PubMed ID: 25791253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Penicillium populations in dry-cured ham manufacturing plants.
    Battilani P; Pietri VA; Giorni P; Formenti S; Bertuzzi T; Toscani T; Virgili R; Kozakiewicz Z
    J Food Prot; 2007 Apr; 70(4):975-80. PubMed ID: 17477269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of Listeria monocytogenes during dry-cured ham processing.
    Montiel R; Peirotén Á; Ortiz S; Bravo D; Gaya P; Martínez-Suárez JV; Tapiador J; Nuñez M; Medina M
    Int J Food Microbiol; 2020 Apr; 318():108469. PubMed ID: 31837591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of added autochthonous yeasts on the volatile compounds of dry-cured hams.
    Simoncini N; Pinna A; Toscani T; Virgili R
    Int J Food Microbiol; 2015 Nov; 212():25-33. PubMed ID: 26210478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of partial NaCl substitution with high-temperature ripening on proteolysis and volatile compounds during process of Chinese dry-cured lamb ham.
    Luo J; Nasiru MM; Zhuang H; Zhou G; Zhang J
    Food Res Int; 2021 Feb; 140():110001. PubMed ID: 33648234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of a selected fungal population to proteolysis on dry-cured ham.
    Martín A; Córdoba JJ; Núñez F; Benito MJ; Asensio MA
    Int J Food Microbiol; 2004 Jul; 94(1):55-66. PubMed ID: 15172485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Listeria monocytogenes and Staphylococcus aureus Survival and Growth during Cooling of Hams Cured with Natural-Source Nitrite.
    Wu J; Acuff J; Waterman K; Ponder M
    J Food Prot; 2021 Feb; 84(2):286-290. PubMed ID: 33003208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of high-pressure treatment on the survival of Listeria monocytogenes Scott A in sliced vacuum-packaged Iberian and Serrano cured hams.
    Morales P; Calzada J; Nuñez M
    J Food Prot; 2006 Oct; 69(10):2539-43. PubMed ID: 17066942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteolysis and Flavor Characteristics of Serrano Ham Processed under Different Ripening Temperature Conditions.
    del Olmo A; Calzada J; Gaya P; Nuñez M
    J Food Sci; 2015 Nov; 80(11):C2404-12. PubMed ID: 26375404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a
    Iacumin L; Arnoldi M; Comi G
    Microorganisms; 2020 Oct; 8(10):. PubMed ID: 33096725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A metabolomics-based approach investigates volatile flavor formation and characteristic compounds of the Dahe black pig dry-cured ham.
    Shi Y; Li X; Huang A
    Meat Sci; 2019 Dec; 158():107904. PubMed ID: 31374425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival of Escherichia coli O157:H7 in needle-tenderized dry cured Westphalian ham.
    Graumann GH; Holley RA
    Int J Food Microbiol; 2007 Sep; 118(2):173-9. PubMed ID: 17706824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ochratoxin A in Dry-Cured Ham: OTA-Producing Fungi, Prevalence, Detection Methods, and Biocontrol Strategies-A Review.
    Chen Y; Chen J; Zhu Q; Wan J
    Toxins (Basel); 2022 Oct; 14(10):. PubMed ID: 36287962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: Pork quality attributes from farm to fork. Part II. Processed pork products.
    Lebret B; Čandek-Potokar M
    Animal; 2022 Feb; 16 Suppl 1():100383. PubMed ID: 34750079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of pre-cure freezing on the profile of volatile compounds during the processing of Iberian hams.
    Pérez-Palacios T; Ruiz J; Martín D; Grau R; Antequera T
    J Sci Food Agric; 2010 Apr; 90(5):882-90. PubMed ID: 20355126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring volatile compounds during dry-cured ham ripening by solid-phase microextraction coupled to a new direct-extraction device.
    Andrés AI; Cava R; Ruiz J
    J Chromatogr A; 2002 Jul; 963(1-2):83-8. PubMed ID: 12188004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.