These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37803758)

  • 21. Effect of phenolic compounds on the formation of alpha-aminoadipic and gamma-glutamic semialdehydes from myofibrillar proteins oxidized by copper, iron, and myoglobin.
    Estévez M; Heinonen M
    J Agric Food Chem; 2010 Apr; 58(7):4448-55. PubMed ID: 20196602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The lipoxygenase activity of myoglobin. Oxidation of linoleic acid by the ferryl oxygen rather than protein radical.
    Rao SI; Wilks A; Hamberg M; Ortiz de Montellano PR
    J Biol Chem; 1994 Mar; 269(10):7210-6. PubMed ID: 8125933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cu2+-catalyzed oxidative degradation of thyroglobulin.
    Lee HJ; Sok DE
    Free Radic Res; 2000 Oct; 33(4):359-68. PubMed ID: 11022845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative and nitrosative stress induced in myofibrillar proteins by a hydroxyl-radical-generating system: impact of nitrite and ascorbate.
    Villaverde A; Parra V; Estévez M
    J Agric Food Chem; 2014 Mar; 62(10):2158-64. PubMed ID: 24547988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbonylation of myofibrillar proteins through the maillard pathway: effect of reducing sugars and reaction temperature.
    Villaverde A; Estévez M
    J Agric Food Chem; 2013 Mar; 61(12):3140-7. PubMed ID: 23438261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracking structural modifications and oxidative status of myofibrillar proteins from silver carp (Hypophthalmichthys molitrix) fillets treated by different stunning methods and in vitro oxidizing conditions.
    Zhang L; Li Q; Hong H; Luo Y
    Food Chem; 2021 Dec; 365():130510. PubMed ID: 34252620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physicochemical properties and gel-forming ability changes of duck myofibrillar protein induced by hydroxyl radical oxidizing systems.
    Zhu X; Shi X; Liu S; Gu Y; Liu J; Fu Q; Wang R
    Front Nutr; 2022; 9():1029116. PubMed ID: 36466406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?
    Villaverde A; Ventanas J; Estévez M
    Meat Sci; 2014 Dec; 98(4):665-72. PubMed ID: 25089792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physicochemical and biological impact of metal-catalyzed oxidation of IgG1 monoclonal antibodies and antibody-drug conjugates via reactive oxygen species.
    Glover ZK; Wecksler A; Aryal B; Mehta S; Pegues M; Chan W; Lehtimaki M; Luo A; Sreedhara A; Rao VA
    MAbs; 2022; 14(1):2122957. PubMed ID: 36151884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of oxidation extent, structural characteristics, and oxidation sites of myofibrillar protein affected by hydroxyl radicals and lipid-oxidizing system.
    Zheng Y; Zhang L; Qiu Z; Yu Z; Shi W; Wang X
    Food Chem; 2022 Dec; 396():133710. PubMed ID: 35872498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative time-course of lipid and myofibrillar protein oxidation in different biphasic systems under hydroxyl radical stress.
    Yang J; Xiong YL
    Food Chem; 2018 Mar; 243():231-238. PubMed ID: 29146333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of salt content and hydrogen peroxide-induced oxidative stress on protein oxidation, conformational/morphological changes, and micro-rheological properties of porcine myofibrillar proteins.
    Zhang M; Li C; Zhang Y; Pan J; Huang S; Lichao He ; Jin G
    Food Chem; 2022 Feb; 370():131074. PubMed ID: 34537423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of oxidative modification on textural properties and gel structure of pork myofibrillar proteins.
    Xia M; Chen Y; Guo J; Feng X; Yin X; Wang L; Wu W; Li Z; Sun W; Ma J
    Food Res Int; 2019 Jul; 121():678-683. PubMed ID: 31108795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dioxygenase and peroxidase activities of soybean lipoxygenase: synergistic interaction between linoleic acid and hydrogen peroxide.
    Kulkarni AP; Chaudhuri J; Mitra A; Richards IS
    Res Commun Chem Pathol Pharmacol; 1989 Nov; 66(2):287-96. PubMed ID: 2513625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidation of ascorbic acid by lipoxygenase: effect of selected chemicals.
    Roy P; Kulkarni AP
    Food Chem Toxicol; 1996 Jun; 34(6):563-70. PubMed ID: 8690317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of Lipid Oxidation in Oil-in-Water Emulsions by Interface-Adsorbed Myofibrillar Protein.
    Yang J; Xiong YL
    J Agric Food Chem; 2015 Oct; 63(40):8896-904. PubMed ID: 26414649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipoxygenase-catalyzed oxidation of chlorpromazine by hydrogen peroxide at acidic pH.
    Pérez-Gilabert M; Sánchez-Ferrer A; García-Carmona F
    Biochim Biophys Acta; 1994 Sep; 1214(2):203-8. PubMed ID: 7918601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages.
    Berardo A; De Maere H; Stavropoulou DA; Rysman T; Leroy F; De Smet S
    Meat Sci; 2016 Nov; 121():359-364. PubMed ID: 27424306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of in vitro oxidation on myofibrillar protein charge, aggregation, and structural characteristics.
    Zhang D; Li H; Wang Z; Emara AM; Hu Y; He Z
    Food Chem; 2020 Dec; 332():127396. PubMed ID: 32615386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein carbonylation in food and nutrition: a concise update.
    Estévez M; Díaz-Velasco S; Martínez R
    Amino Acids; 2022 Apr; 54(4):559-573. PubMed ID: 34669011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.