These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37803917)
1. Targeting Nanoplatform for Atherosclerosis Inhibition and Degradation via a Dual-Track Reverse Cholesterol Transport Strategy. Chen Z; Zhu Q; Li D; Lv Q; Fu G; Ma B; Zhang W Small; 2024 Feb; 20(7):e2306457. PubMed ID: 37803917 [TBL] [Abstract][Full Text] [Related]
2. Targeting Theranostics of Atherosclerosis by Dual-Responsive Nanoplatform via Photoacoustic Imaging and Three-In-One Integrated Lipid Management. Ma B; Xiao Y; Lv Q; Li G; Wang Y; Fu G Adv Mater; 2023 Feb; 35(5):e2206129. PubMed ID: 36394179 [TBL] [Abstract][Full Text] [Related]
3. Activation of liver X receptor decreases atherosclerosis in Ldlr⁻/⁻ mice in the absence of ATP-binding cassette transporters A1 and G1 in myeloid cells. Kappus MS; Murphy AJ; Abramowicz S; Ntonga V; Welch CL; Tall AR; Westerterp M Arterioscler Thromb Vasc Biol; 2014 Feb; 34(2):279-84. PubMed ID: 24311381 [TBL] [Abstract][Full Text] [Related]
4. A Novel Candidate for Prevention and Treatment of Atherosclerosis: Urolithin B Decreases Lipid Plaque Deposition in apoE Zhao W; Wang L; Haller V; Ritsch A Mol Nutr Food Res; 2019 May; 63(10):e1800887. PubMed ID: 30762936 [TBL] [Abstract][Full Text] [Related]
5. QiShenYiQi pill inhibits atherosclerosis by promoting reverse cholesterol transport PPARγ-LXRα/β-ABCA1 pathway. Xie J; Peng L; Wang T; Yang C; Chen N; Feng X; Wu T; Xu T; Chen Y J Ethnopharmacol; 2023 Oct; 315():116684. PubMed ID: 37230281 [TBL] [Abstract][Full Text] [Related]
7. Anionic nanoliposomes reduced atherosclerosis progression in Low Density Lipoprotein Receptor (LDLR) deficient mice fed a high fat diet. Krishna SM; Moxon JV; Jose RJ; Li J; Sahebkar A; Jaafari MR; Hatamipour M; Liu D; Golledge J J Cell Physiol; 2018 Oct; 233(10):6951-6964. PubMed ID: 29741759 [TBL] [Abstract][Full Text] [Related]
8. Homocysteine accelerates atherosclerosis via inhibiting LXRα-mediated ABCA1/ABCG1-dependent cholesterol efflux from macrophages. Jin P; Bian Y; Wang K; Cong G; Yan R; Sha Y; Ma X; Zhou J; Yuan Z; Jia S Life Sci; 2018 Dec; 214():41-50. PubMed ID: 30393020 [TBL] [Abstract][Full Text] [Related]
9. Phospholipid nanoparticles: Therapeutic potentials against atherosclerosis via reducing cholesterol crystals and inhibiting inflammation. Luo Y; Guo Y; Wang H; Yu M; Hong K; Li D; Li R; Wen B; Hu D; Chang L; Zhang J; Yang B; Sun D; Schwendeman AS; Eugene Chen Y EBioMedicine; 2021 Dec; 74():103725. PubMed ID: 34879325 [TBL] [Abstract][Full Text] [Related]
10. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages. Hong YF; Kim H; Kim HS; Park WJ; Kim JY; Chung DK PLoS One; 2016; 11(4):e0154302. PubMed ID: 27120199 [TBL] [Abstract][Full Text] [Related]
11. QiShenYiQi pill inhibits atherosclerosis by promoting TTC39B-LXR mediated reverse cholesterol transport in liver. Wang TT; Yang CY; Peng L; Li L; Chen NT; Feng X; Xie J; Wu TC; Xu T; Chen YZ Phytomedicine; 2024 Jan; 123():155192. PubMed ID: 37951148 [TBL] [Abstract][Full Text] [Related]
12. Synthetic high-density lipoproteins delivering liver X receptor agonist prevent atherogenesis by enhancing reverse cholesterol transport. Yuan W; Yu B; Yu M; Kuai R; Morin EE; Wang H; Hu D; Zhang J; Moon JJ; Chen YE; Guo Y; Schwendeman A J Control Release; 2021 Jan; 329():361-371. PubMed ID: 33188828 [TBL] [Abstract][Full Text] [Related]
13. IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. Gabunia K; Ellison S; Kelemen S; Kako F; Cornwell WD; Rogers TJ; Datta PK; Ouimet M; Moore KJ; Autieri MV Am J Pathol; 2016 May; 186(5):1361-74. PubMed ID: 26952642 [TBL] [Abstract][Full Text] [Related]
14. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Frambach SJCM; de Haas R; Smeitink JAM; Rongen GA; Russel FGM; Schirris TJJ Pharmacol Rev; 2020 Jan; 72(1):152-190. PubMed ID: 31831519 [TBL] [Abstract][Full Text] [Related]
15. The combination of L-4F and simvastatin stimulate cholesterol efflux and related proteins expressions to reduce atherosclerotic lesions in apoE knockout mice. Ying R; Yuan Y; Qin YF; Tian D; Feng L; Guo ZG; Sun YX; Li MX Lipids Health Dis; 2013 Dec; 12():180. PubMed ID: 24314261 [TBL] [Abstract][Full Text] [Related]
16. Andrographolide Inhibits Oxidized LDL-Induced Cholesterol Accumulation and Foam Cell Formation in Macrophages. Lin HC; Lii CK; Chen HC; Lin AH; Yang YC; Chen HW Am J Chin Med; 2018; 46(1):87-106. PubMed ID: 29298513 [TBL] [Abstract][Full Text] [Related]
17. Viewing atherosclerosis through a crystal lens: How the evolving structure of cholesterol crystals in atherosclerotic plaque alters its stability. Nidorf SM; Fiolet A; Abela GS J Clin Lipidol; 2020; 14(5):619-630. PubMed ID: 32792218 [TBL] [Abstract][Full Text] [Related]
18. Tanshinone IIA Promotes Macrophage Cholesterol Efflux and Attenuates Atherosclerosis of apoE-/- Mice by Omentin-1/ABCA1 Pathway. Tan YL; Ou HX; Zhang M; Gong D; Zhao ZW; Chen LY; Xia XD; Mo ZC; Tang CK Curr Pharm Biotechnol; 2019; 20(5):422-432. PubMed ID: 30947667 [TBL] [Abstract][Full Text] [Related]
19. Poly(ADP-ribose) Polymerase 1 Represses Liver X Receptor-mediated ABCA1 Expression and Cholesterol Efflux in Macrophages. Shrestha E; Hussein MA; Savas JN; Ouimet M; Barrett TJ; Leone S; Yates JR; Moore KJ; Fisher EA; Garabedian MJ J Biol Chem; 2016 May; 291(21):11172-84. PubMed ID: 27026705 [TBL] [Abstract][Full Text] [Related]
20. A novel small molecule liver X receptor transcriptional regulator, nagilactone B, suppresses atherosclerosis in apoE-deficient mice. Gui Y; Yao S; Yan H; Hu L; Yu C; Gao F; Xi C; Li H; Ye Y; Wang Y Cardiovasc Res; 2016 Oct; 112(1):502-14. PubMed ID: 27460841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]