These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 37804167)
1. Microbial communities in paddy soils: differences in abundance and functionality between rhizosphere and pore water, the influence of different soil organic carbon, sulfate fertilization and cultivation time, and contribution to arsenic mobility and speciation. Zecchin S; Wang J; Martin M; Romani M; Planer-Friedrich B; Cavalca L FEMS Microbiol Ecol; 2023 Oct; 99(11):. PubMed ID: 37804167 [TBL] [Abstract][Full Text] [Related]
2. Influence of water management on the active root-associated microbiota involved in arsenic, iron, and sulfur cycles in rice paddies. Zecchin S; Corsini A; Martin M; Cavalca L Appl Microbiol Biotechnol; 2017 Sep; 101(17):6725-6738. PubMed ID: 28660288 [TBL] [Abstract][Full Text] [Related]
3. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains. Wang M; Tang Z; Chen XP; Wang X; Zhou WX; Tang Z; Zhang J; Zhao FJ Environ Pollut; 2019 Apr; 247():736-744. PubMed ID: 30721864 [TBL] [Abstract][Full Text] [Related]
4. Long-Term Manure Application Changes Bacterial Communities in Rice Rhizosphere and Arsenic Speciation in Rice Grains. Tang X; Zou L; Su S; Lu Y; Zhai W; Manzoor M; Liao Y; Nie J; Shi J; Ma LQ; Xu J Environ Sci Technol; 2021 Feb; 55(3):1555-1565. PubMed ID: 33449628 [TBL] [Abstract][Full Text] [Related]
5. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem. Das S; Chou ML; Jean JS; Liu CC; Yang HJ Sci Total Environ; 2016 Jan; 542(Pt A):642-52. PubMed ID: 26546760 [TBL] [Abstract][Full Text] [Related]
6. Exposure to different arsenic species drives the establishment of iron- and sulfur-oxidizing bacteria on rice root iron plaques. Zecchin S; Colombo M; Cavalca L World J Microbiol Biotechnol; 2019 Jul; 35(8):117. PubMed ID: 31332532 [TBL] [Abstract][Full Text] [Related]
7. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Xu X; Wang P; Zhang J; Chen C; Wang Z; Kopittke PM; Kretzschmar R; Zhao FJ Environ Pollut; 2019 Aug; 251():952-960. PubMed ID: 31234262 [TBL] [Abstract][Full Text] [Related]
8. The response of arsenic bioavailability and microbial community in paddy soil with the application of sulfur fertilizers. Tang X; Li L; Wu C; Khan MI; Manzoor M; Zou L; Shi J Environ Pollut; 2020 Sep; 264():114679. PubMed ID: 32380397 [TBL] [Abstract][Full Text] [Related]
9. Chemical-microbial effects of acetic acid, oxalic acid and citric acid on arsenic transformation and migration in the rhizosphere of paddy soil. Yang J; Liu X; Fei C; Lu H; Ma Y; Ma Z; Ye W Ecotoxicol Environ Saf; 2023 Jul; 259():115046. PubMed ID: 37235901 [TBL] [Abstract][Full Text] [Related]
10. Sulfur fertilization and water management ensure phytoremediation coupled with argo-production by mediating rhizosphere microbiota in the Oryza sativa L.-Sedum alfredii Hance rotation system. Qiao Y; Hou D; Lin Z; Wei S; Chen J; Li J; Zhao J; Xu K; Lu L; Tian S J Hazard Mater; 2023 Sep; 457():131686. PubMed ID: 37270958 [TBL] [Abstract][Full Text] [Related]
11. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100 [TBL] [Abstract][Full Text] [Related]
12. Effects of citric acid on arsenic transformation and microbial communities in different paddy soils. Zou L; Jiang O; Zhang S; Duan G; Gustave W; An X; Tang X Environ Res; 2024 May; 249():118421. PubMed ID: 38325790 [TBL] [Abstract][Full Text] [Related]
13. Influence of sulfur fertilization on CuO nanoparticles migration and transformation in soil pore water from the rice (Oryza sativa L.) rhizosphere. Sun L; Xue Y; Peng C; Xu C; Shi J Environ Pollut; 2020 Feb; 257():113608. PubMed ID: 31761580 [TBL] [Abstract][Full Text] [Related]
14. Citric acid secretion from rice roots contributes to reduction and immobilization of Cr(VI) by driving microbial sulfur and iron cycle in paddy soil. Xiao W; Zhang Q; Zhao S; Chen D; Gao N; Huang M; Ye X Sci Total Environ; 2023 Jan; 854():158832. PubMed ID: 36122705 [TBL] [Abstract][Full Text] [Related]
15. Transformation of arsenic species by diverse endophytic bacteria of rice roots. Chen C; Yang B; Gao A; Yu Y; Zhao FJ Environ Pollut; 2022 Sep; 309():119825. PubMed ID: 35870529 [TBL] [Abstract][Full Text] [Related]
16. Effects of Fe-oxidizing bacteria (FeOB) on iron plaque formation, As concentrations and speciation in rice (Oryza sativa L.). Xiao A; Li WC; Ye Z Ecotoxicol Environ Saf; 2020 Mar; 190():110136. PubMed ID: 31901806 [TBL] [Abstract][Full Text] [Related]
17. Rhizosphere bacterial community composition affects cadmium and arsenic accumulation in rice (Oryza sativa L.). Huang L; Wang X; Chi Y; Huang L; Li WC; Ye Z Ecotoxicol Environ Saf; 2021 Oct; 222():112474. PubMed ID: 34214770 [TBL] [Abstract][Full Text] [Related]
18. Niche Differentiation of Arsenic-Transforming Microbial Groups in the Rice Rhizosphere Compartments as Impacted by Water Management and Soil-Arsenic Concentrations. Somenahally AC; Loeppert RH; Zhou J; Gentry TJ Front Microbiol; 2021; 12():736751. PubMed ID: 34803950 [TBL] [Abstract][Full Text] [Related]
19. Microbial driven iron reduction affects arsenic transformation and transportation in soil-rice system. Xue S; Jiang X; Wu C; Hartley W; Qian Z; Luo X; Li W Environ Pollut; 2020 May; 260():114010. PubMed ID: 31995782 [TBL] [Abstract][Full Text] [Related]
20. Increased arsenic mobilization in the rice rhizosphere is mediated by iron-reducing bacteria. Dai J; Tang Z; Jiang N; Kopittke PM; Zhao FJ; Wang P Environ Pollut; 2020 Aug; 263(Pt A):114561. PubMed ID: 32320889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]