These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 37804729)
1. Molecular insights: Proteomic and metabolomic dissection of plasma-induced growth and functional compound accumulation in Raphanus sativus. Gupta R; Kaushik N; Negi M; Kaushik NK; Choi EH Food Chem; 2024 Mar; 435():137548. PubMed ID: 37804729 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome and metabolome profiling to elucidate mechanisms underlying the blue discoloration of radish roots during storage. Zhang Y; Zhao X; Ma Y; Zhang L; Jiang Y; Liang H; Wang D Food Chem; 2021 Nov; 362():130076. PubMed ID: 34090048 [TBL] [Abstract][Full Text] [Related]
3. Transcriptomic and metabolic analyses revealed the modulatory effect of vernalization on glucosinolate metabolism in radish (Raphanus sativus L.). Nugroho ABD; Lee SW; Pervitasari AN; Moon H; Choi D; Kim J; Kim DH Sci Rep; 2021 Dec; 11(1):24023. PubMed ID: 34912010 [TBL] [Abstract][Full Text] [Related]
4. De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism. Wang Y; Pan Y; Liu Z; Zhu X; Zhai L; Xu L; Yu R; Gong Y; Liu L BMC Genomics; 2013 Nov; 14(1):836. PubMed ID: 24279309 [TBL] [Abstract][Full Text] [Related]
5. Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Kang JN; Won SY; Seo MS; Lee J; Lee SM; Kwon SJ; Kim JS Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32785002 [TBL] [Abstract][Full Text] [Related]
6. Metabolomic approach of azole fungicides in radish (Raphanus sativus): Perspective of functional metabolites. Yu JW; Song MH; Keum YS; Lee JH J Hazard Mater; 2023 Apr; 448():130937. PubMed ID: 36758439 [TBL] [Abstract][Full Text] [Related]
7. Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L.) based on comparative genomic analysis. Wang J; Qiu Y; Wang X; Yue Z; Yang X; Chen X; Zhang X; Shen D; Wang H; Song J; He H; Li X Sci Rep; 2017 Nov; 7(1):16040. PubMed ID: 29167500 [TBL] [Abstract][Full Text] [Related]
8. Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot. Wang R; Mei Y; Xu L; Zhu X; Wang Y; Guo J; Liu L Planta; 2018 May; 247(5):1109-1122. PubMed ID: 29368016 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing. Wang Y; Xu L; Chen Y; Shen H; Gong Y; Limera C; Liu L PLoS One; 2013; 8(6):e66539. PubMed ID: 23840502 [TBL] [Abstract][Full Text] [Related]
10. Dissecting Root Proteome Changes Reveals New Insight into Cadmium Stress Response in Radish (Raphanus sativus L.). Xu L; Wang Y; Zhang F; Tang M; Chen Y; Wang J; Karanja BK; Luo X; Zhang W; Liu L Plant Cell Physiol; 2017 Nov; 58(11):1901-1913. PubMed ID: 29016946 [TBL] [Abstract][Full Text] [Related]
11. Mechanism Underlying the Onset of Internal Blue Discoloration in Japanese Radish (Raphanus sativus) Roots. Teranishi K; Masayasu N; Masuda D J Agric Food Chem; 2016 Sep; 64(35):6745-51. PubMed ID: 27530819 [TBL] [Abstract][Full Text] [Related]
12. The primary active components, antioxidant properties, and differential metabolite profiles of radish sprouts (Raphanus sativus L.) upon domestic storage: analysis of nutritional quality. Li R; Zhu Y J Sci Food Agric; 2018 Dec; 98(15):5853-5860. PubMed ID: 29786832 [TBL] [Abstract][Full Text] [Related]
13. Effects of U on the growth, reactive oxygen metabolism and osmotic regulation in radish (Raphanus sativus L.). Wu G; Chen X; Zheng T; Xiao PX; Zhong NY; Yang XL; Li Y; Li W Environ Sci Pollut Res Int; 2022 Aug; 29(36):55081-55091. PubMed ID: 35312915 [TBL] [Abstract][Full Text] [Related]
14. A 2-Oxoglutarate-Dependent Dioxygenase Mediates the Biosynthesis of Glucoraphasatin in Radish. Kakizaki T; Kitashiba H; Zou Z; Li F; Fukino N; Ohara T; Nishio T; Ishida M Plant Physiol; 2017 Mar; 173(3):1583-1593. PubMed ID: 28100450 [TBL] [Abstract][Full Text] [Related]
15. Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root. Gancheva MS; Dodueva IE; Lebedeva MA; Tvorogova VE; Tkachenko AA; Lutova LA BMC Plant Biol; 2016 Jan; 16 Suppl 1(Suppl 1):7. PubMed ID: 26821718 [TBL] [Abstract][Full Text] [Related]
16. Metabolite Profiling and Comparative Analysis of Secondary Metabolites in Chinese Cabbage, Radish, and Hybrid Park CH; Park SY; Park YJ; Kim JK; Park SU J Agric Food Chem; 2020 Nov; 68(47):13711-13719. PubMed ID: 33190495 [TBL] [Abstract][Full Text] [Related]
17. Characterization of RsMYB28 and RsMYB29 transcription factor genes in radish (Raphanus sativus L.). Luo XB; Liu Z; Xu L; Wang Y; Zhu XW; Zhang W; Chen W; Zhu YL; Su XJ; Everlyne M; Liu LW Genet Mol Res; 2016 Sep; 15(3):. PubMed ID: 27706769 [TBL] [Abstract][Full Text] [Related]
18. Inhibitory mechanism of low-oxygen-storage treatment in postharvest internal bluing of radish (Raphanus sativus) roots. Zhao X; Zhang Y; Ma Y; Zhang L; Jiang Y; Liang H; Wang D Food Chem; 2021 Dec; 364():130423. PubMed ID: 34198034 [TBL] [Abstract][Full Text] [Related]
19. Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing. Feng H; Xu L; Wang Y; Tang M; Zhu X; Zhang W; Sun X; Nie S; Muleke EM; Liu L Mol Genet Genomics; 2017 Oct; 292(5):1151-1163. PubMed ID: 28667404 [TBL] [Abstract][Full Text] [Related]
20. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.). Zhang W; Ebbs SD; Musante C; White JC; Gao C; Ma X J Agric Food Chem; 2015 Jan; 63(2):382-90. PubMed ID: 25531028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]