These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37804736)

  • 1. Reaction mechanism of thermal decomposition of Phosphogypsum.
    Laasri F; Carrillo Garcia A; Latifi M; Chaouki J
    Waste Manag; 2023 Oct; 171():482-490. PubMed ID: 37804736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of CaO from CaSO
    Xia X; Zhang L; Li Z; Yuan X; Ma C; Song Z; Chen G
    J Environ Manage; 2022 Jan; 301():113855. PubMed ID: 34597947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Study on Optimization of Phosphogypsum Suspension Decomposition Conditions under Double Catalysis.
    Xu P; Li H; Chen Y
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33673631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low temperature and highly-efficient one-step decomposition of phosphogypsum via biochar by Fe
    Luo Q; Deng Q; Liao H; Wang W; Zeng B; Luo C; Tu J; Wu L; Tan H; Dong F
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90787-90798. PubMed ID: 37462873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposing properties of phosphogypsum with iron addition under two-step cycle multi-atmosphere control in fluidised bed.
    Zheng D; Ma L; Wang R; Yang J; Dai Q
    Waste Manag Res; 2018 Feb; 36(2):183-193. PubMed ID: 29307272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis.
    Valverde JM; Perejon A; Medina S; Perez-Maqueda LA
    Phys Chem Chem Phys; 2015 Nov; 17(44):30162-76. PubMed ID: 26506285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopic study of phosphogypsum thermal reduction with the carbonaceous material.
    Msila X; Barnard W; Billing DG
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Oct; 149():317-22. PubMed ID: 25965515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Impurities on the Process of Obtaining Calcium Carbonate during the Processing of Phosphogypsum.
    Pyagai I; Zubkova O; Babykin R; Toropchina M; Fediuk R
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling phosphogypsum as the sole calcium oxide source in calcium sulfoaluminate cement production and solidification of phosphorus.
    Wu S; Yao X; Yao Y; Ren C; Wu C; Zhang C; Wang W
    Sci Total Environ; 2022 Feb; 808():152118. PubMed ID: 34863744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical looping gasification of phosphogypsum as an oxygen carrier: The Ca and S migration mechanism using the DFT method.
    Yang J; Ma L; Yang J; Guo Z; Liu H; Zhang W
    Sci Total Environ; 2019 Nov; 689():854-864. PubMed ID: 31280167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trichloroethylene decomposition and in-situ dry sorption of Cl-products by calcium oxides prepared from hydrated limes.
    Gotoh Y; Iwata G; Choh K; Kubota M; Matsuda H
    Chemosphere; 2011 Oct; 85(4):637-42. PubMed ID: 21821273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative evaluation of recarbonated CaCO
    Kang SY; Go ES; Seo SB; Kim HW; Keel SI; Lee SH
    Sci Total Environ; 2021 Mar; 758():143704. PubMed ID: 33243493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel and sustainable approach for biotransformation of phosphogypsum to calcium carbonate using urease producing
    Patil PP; Prabhu M; Mutnuri S
    Environ Technol; 2023 Jan; 44(2):226-239. PubMed ID: 34383628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental impact and management of phosphogypsum.
    Tayibi H; Choura M; López FA; Alguacil FJ; López-Delgado A
    J Environ Manage; 2009 Jun; 90(8):2377-86. PubMed ID: 19406560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Simple and Efficient Method for Preparing High-Purity α-CaSO
    Lin Y; Sun H; Peng T; Ding W; Li X; Xiao S
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling phosphogypsum as a sole calcium oxide source in calcium sulfoaluminate cement and its environmental effects.
    Wu S; Yao X; Ren C; Yao Y; Wang W
    J Environ Manage; 2020 Oct; 271():110986. PubMed ID: 32778279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of phosphogypsum-copper smelting slag-based consolidating body with high compressive strength.
    Xu X; Wang W; Lv C; Ma M; Shi L; Du D; Zhang TC; Shen H
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):42075-42086. PubMed ID: 36645604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristic pollutant purification analysis of modified phosphogypsum comprehensive utilization.
    Wang CQ; Xiong DM; Chen Y; Wu K; Tu MJ; Wang PX; Zhang ZJ; Zhou L
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):67456-67465. PubMed ID: 36048392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkali treatment-acid leaching of rare earth elements from phosphogypsum fertilizer: insight for additional resource of valuable components.
    Gasser MS; Ismail ZH; Abu Elgoud EM; Hai FA; Ali IO; Aly HF
    BMC Chem; 2022 Jul; 16(1):51. PubMed ID: 35810295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolysis characteristics and kinetics analysis of oil sludge with CaO additive.
    Chu Z; Gong Z; Zhang H; Wang Z; Liu L; Wang Z; Wu J; Wang J; Li X; Guo Y; Zhang J; Li G
    Environ Technol; 2021 Jul; ():1-11. PubMed ID: 34236009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.