BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37804826)

  • 1. Complex role of strain engineering of lattice thermal conductivity in hydrogenated graphene-like borophene induced by high-order phonon anharmonicity.
    He J; Yu C; Lu S; Shan S; Zhang Z; Chen J
    Nanotechnology; 2023 Oct; 35(2):. PubMed ID: 37804826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon stability and phonon transport of graphene-like borophene.
    Yin Y; Li D; Hu Y; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Jul; 31(31):315709. PubMed ID: 32203947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity.
    Wu X; Varshney V; Lee J; Zhang T; Wohlwend JL; Roy AK; Luo T
    Nano Lett; 2016 Jun; 16(6):3925-35. PubMed ID: 27152879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Different Phonon Scattering Factors on the Heat Transport Properties of Graphene Ribbons.
    Chen J; Meng L
    ACS Omega; 2022 Jun; 7(23):20186-20194. PubMed ID: 35722022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice thermal conductivity of borophene from first principle calculation.
    Xiao H; Cao W; Ouyang T; Guo S; He C; Zhong J
    Sci Rep; 2017 Apr; 7():45986. PubMed ID: 28374853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogenation driven ultra-low lattice thermal conductivity in
    Sharma A; Rangra VS
    J Phys Condens Matter; 2024 Feb; 36(20):. PubMed ID: 38335552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric field tuned anisotropic to isotropic thermal transport transition in monolayer borophene without altering its atomic structure.
    Yang Z; Yuan K; Meng J; Hu M
    Nanoscale; 2020 Oct; 12(37):19178-19190. PubMed ID: 32926048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe
    Shafique A; Shin YH
    Phys Chem Chem Phys; 2017 Dec; 19(47):32072-32078. PubMed ID: 29181465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX; Liu JT; Guo SD; Li HC
    Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tensile strain and finite size modulation of low lattice thermal conductivity in monolayer TMDCs (HfSe
    Chen G; Bao W; Wang Z; Tang D
    Phys Chem Chem Phys; 2023 Mar; 25(13):9225-9237. PubMed ID: 36919457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Fold Enhancement of In-Plane Thermal Conductivity of Borophene through Metallic Atom Intercalation.
    Hu Y; Yin Y; Li S; Zhou H; Li D; Zhang G
    Nano Lett; 2020 Oct; 20(10):7619-7626. PubMed ID: 32852213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N; Xu L; Wang HQ; Zheng JC
    Nanotechnology; 2011 Mar; 22(10):105705. PubMed ID: 21289391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear deformation-induced anisotropic thermal conductivity of graphene.
    Cui L; Shi S; Wei G; Du X
    Phys Chem Chem Phys; 2018 Jan; 20(2):951-957. PubMed ID: 29231938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity of graphene under biaxial strain: an analysis of spectral phonon properties.
    K V S D; Kannam SK; Sathian SP
    Nanotechnology; 2020 Aug; 31(34):345703. PubMed ID: 32369790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles study of thermal properties of borophene.
    Sun H; Li Q; Wan XG
    Phys Chem Chem Phys; 2016 Jun; 18(22):14927-32. PubMed ID: 27188523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High anisotropy of fully hydrogenated borophene.
    Wang Z; Lü TY; Wang HQ; Feng YP; Zheng JC
    Phys Chem Chem Phys; 2016 Nov; 18(46):31424-31430. PubMed ID: 27844074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phononic Thermal Transport along Graphene Grain Boundaries: A Hidden Vulnerability.
    Tong Z; Pecchia A; Yam C; Dumitrică T; Frauenheim T
    Adv Sci (Weinh); 2021 Sep; 8(18):e2101624. PubMed ID: 34291609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of High Order Phonon Scattering on the Thermal Conductivity and Its Response to Strain of a Penta-NiN
    Zhang C; Sun J; Shen Y; Kang W; Wang Q
    J Phys Chem Lett; 2022 Jun; 13(25):5734-5741. PubMed ID: 35713616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations.
    Liu G; Wang H; Gao Y; Zhou J; Wang H
    Phys Chem Chem Phys; 2017 Jan; 19(4):2843-2849. PubMed ID: 28067931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Graphene Phononic Crystals for Heat Phonon Engineering.
    Masrura HM; Kareekunnan A; Liu F; Ramaraj SG; Ellrott G; Hammam AMM; Muruganathan M; Mizuta H
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32630087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.