These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37804826)

  • 21. Design of Graphene Phononic Crystals for Heat Phonon Engineering.
    Masrura HM; Kareekunnan A; Liu F; Ramaraj SG; Ellrott G; Hammam AMM; Muruganathan M; Mizuta H
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32630087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase Stability, Strong Four-Phonon Scattering, and Low Lattice Thermal Conductivity in Superatom-Based Superionic Conductor Na
    Du PH; Zhang C; Sun J; Li T; Sun Q
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47882-47891. PubMed ID: 36239388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A strain-induced considerable decrease of lattice thermal conductivity in 2D KAgSe with Coulomb interaction.
    Xu Z; Xia Q; Gao G
    Phys Chem Chem Phys; 2022 Oct; 24(40):24917-24923. PubMed ID: 36200432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anomalous thermal transport under high pressure in boron arsenide.
    Li S; Qin Z; Wu H; Li M; Kunz M; Alatas A; Kavner A; Hu Y
    Nature; 2022 Dec; 612(7940):459-464. PubMed ID: 36418403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene.
    Sun Z; Yuan K; Zhang X; Qin G; Gong X; Tang D
    Phys Chem Chem Phys; 2019 Jul; 21(28):15647-15655. PubMed ID: 31268444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonon transport in graphene based materials.
    Liu C; Lu P; Chen W; Zhao Y; Chen Y
    Phys Chem Chem Phys; 2021 Dec; 23(46):26030-26060. PubMed ID: 34515261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate.
    Luo Y; Wang J; Li Y; Wang J
    Sci Rep; 2016 Jul; 6():29801. PubMed ID: 27430670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of finite-temperature and anharmonic lattice dynamics on the thermal conductivity of ZrS
    Pandit A; Hamad B
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34315140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Abnormal Thickness-Dependent Thermal Transport in Suspended 2D PdSe
    Li M; Sun H; Liu C; Zhou J; Zhang G; Zhang L; Zhao Y
    Small; 2024 Jul; 20(28):e2311125. PubMed ID: 38342583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.
    Wu X; Lee J; Varshney V; Wohlwend JL; Roy AK; Luo T
    Sci Rep; 2016 Mar; 6():22504. PubMed ID: 26928396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strain-tunable lattice thermal conductivity of the Janus PtSTe monolayer.
    Pan L; Carrete J; Wang Z
    J Phys Condens Matter; 2021 Oct; 34(1):. PubMed ID: 34571499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong Anharmonicity at the Origin of Anomalous Thermal Conductivity in Double Perovskite Cs
    Cappai A; Melis C; Marongiu D; Quochi F; Saba M; Congiu F; He Y; Slade TJ; Kanatzidis MG; Colombo L
    Adv Sci (Weinh); 2024 Mar; 11(9):e2305861. PubMed ID: 38111327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal Transport Engineering in Graphdiyne and Graphdiyne Nanoribbons.
    Wan Y; Xiong S; Ouyang B; Niu Z; Ni Y; Zhao Y; Zhang X
    ACS Omega; 2019 Feb; 4(2):4147-4152. PubMed ID: 31459623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phonon stability boundary and deep elastic strain engineering of lattice thermal conductivity.
    Shi Z; Tsymbalov E; Shi W; Barr A; Li Q; Li J; Chen XQ; Dao M; Suresh S; Li J
    Proc Natl Acad Sci U S A; 2024 Feb; 121(8):e2313840121. PubMed ID: 38354259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonmonotonic strain dependence of lattice thermal conductivity in monolayer SiC: a first-principles study.
    Guo SD; Dong J; Liu JT
    Phys Chem Chem Phys; 2018 Aug; 20(34):22038-22046. PubMed ID: 30112534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vacancies tailoring lattice anharmonicity of Zintl-type thermoelectrics.
    Zhu J; Ren Q; Chen C; Wang C; Shu M; He M; Zhang C; Le MD; Torri S; Wang CW; Wang J; Cheng Z; Li L; Wang G; Jiang Y; Wu M; Qu Z; Tong X; Chen Y; Zhang Q; Ma J
    Nat Commun; 2024 Mar; 15(1):2618. PubMed ID: 38521767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strain-Driven High Thermal Conductivity in Hexagonal Boron Phosphide Monolayer.
    Chen X; Wang G; Li B; Wang N
    Langmuir; 2024 Feb; 40(6):3095-3104. PubMed ID: 38299976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical Investigation on the Microscopic Mechanism of Lattice Thermal Conductivity of ZnXP
    Wei L; Lv X; Yang Y; Xu J; Yu H; Zhang H; Wang X; Liu B; Zhang C; Zhou J
    Inorg Chem; 2019 Apr; 58(7):4320-4327. PubMed ID: 30848900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient mechanical modulation of the phonon thermal conductivity of Mo
    Xu K; Deng S; Liang T; Cao X; Han M; Zeng X; Zhang Z; Yang N; Wu J
    Nanoscale; 2022 Feb; 14(8):3078-3086. PubMed ID: 35138319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phonon thermal transport in ferroelectric
    Qi H; Wu C; Lu P; Liu C
    Nanotechnology; 2023 Dec; 35(8):. PubMed ID: 37963408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.