BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 37804835)

  • 1. Targeting RNA with synthetic oligonucleotides: Clinical success invites new challenges.
    Hofman CR; Corey DR
    Cell Chem Biol; 2024 Jan; 31(1):125-138. PubMed ID: 37804835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development.
    Quemener AM; Centomo ML; Sax SL; Panella R
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antitumoral RNA-targeted oligonucleotide therapeutics: The third pillar after small molecule inhibitors and antibodies.
    Taniguchi H; Suzuki Y; Imai K; Adachi Y
    Cancer Sci; 2022 Sep; 113(9):2952-2961. PubMed ID: 35701833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of Frataxin Protein Expression by Antisense Oligonucleotides Targeting the Mutant Expanded Repeat.
    Li L; Shen X; Liu Z; Norrbom M; Prakash TP; O'Reilly D; Sharma VK; Damha MJ; Watts JK; Rigo F; Corey DR
    Nucleic Acid Ther; 2018 Feb; 28(1):23-33. PubMed ID: 29341839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antisense technology: an overview and prospectus.
    Crooke ST; Baker BF; Crooke RM; Liang XH
    Nat Rev Drug Discov; 2021 Jun; 20(6):427-453. PubMed ID: 33762737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nusinersen in the Treatment of Spinal Muscular Atrophy.
    Goodkey K; Aslesh T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():69-76. PubMed ID: 30171535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Evaluation of Antisense-Mediated Exon Inclusion for Spinal Muscular Atrophy.
    Touznik A; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():439-454. PubMed ID: 30171558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug Metabolism and Pharmacokinetics of Antisense Oligonucleotide Therapeutics: Typical Profiles, Evaluation Approaches, and Points to Consider Compared with Small Molecule Drugs.
    Takakusa H; Iwazaki N; Nishikawa M; Yoshida T; Obika S; Inoue T
    Nucleic Acid Ther; 2023 Apr; 33(2):83-94. PubMed ID: 36735616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and Opportunities for Nucleic Acid Therapeutics.
    Corey DR; Damha MJ; Manoharan M
    Nucleic Acid Ther; 2022 Feb; 32(1):8-13. PubMed ID: 34931905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs.
    Shen X; Corey DR
    Nucleic Acids Res; 2018 Feb; 46(4):1584-1600. PubMed ID: 29240946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic Antisense Oligonucleotides Are Coming of Age.
    Bennett CF
    Annu Rev Med; 2019 Jan; 70():307-321. PubMed ID: 30691367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Long Noncoding RNA with Antisense Oligonucleotide Technology as Cancer Therapeutics.
    Zhou T; Kim Y; MacLeod AR
    Methods Mol Biol; 2016; 1402():199-213. PubMed ID: 26721493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guidelines for Experiments Using Antisense Oligonucleotides and Double-Stranded RNAs.
    Gagnon KT; Corey DR
    Nucleic Acid Ther; 2019 Jun; 29(3):116-122. PubMed ID: 30907681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligonucleotide therapeutics in neurodegenerative diseases.
    Scoles DR; Pulst SM
    RNA Biol; 2018; 15(6):707-714. PubMed ID: 29560813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translating Antisense Technology into a Treatment for Huntington's Disease.
    Lane RM; Smith A; Baumann T; Gleichmann M; Norris D; Bennett CF; Kordasiewicz H
    Methods Mol Biol; 2018; 1780():497-523. PubMed ID: 29856033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanisms of action and patentability of therapeutic oligonucleotides].
    Crouvezier N; Marie AC; Moumné L
    Med Sci (Paris); 2023 Feb; 39(2):111-118. PubMed ID: 36799745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liver as a target for oligonucleotide therapeutics.
    Sehgal A; Vaishnaw A; Fitzgerald K
    J Hepatol; 2013 Dec; 59(6):1354-9. PubMed ID: 23770039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in spinal muscular atrophy research.
    Wurster C; Petri S
    Curr Opin Neurol; 2022 Oct; 35(5):693-698. PubMed ID: 35942665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress on RNA-based therapeutics for genetic diseases.
    Luo T; Huo C; Zhou T; Xie S
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2023 Aug; 52(4):406-416. PubMed ID: 37643975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antisense oligonucleotide: A promising therapeutic option to beat COVID-19.
    Quemener AM; Galibert MD
    Wiley Interdiscip Rev RNA; 2022 Jul; 13(4):e1703. PubMed ID: 34842345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.