These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37805019)

  • 1. Interpretable many-class decoding for MEG.
    Csaky R; van Es MWJ; Jones OP; Woolrich M
    Neuroimage; 2023 Nov; 282():120396. PubMed ID: 37805019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Group-level spatio-temporal pattern recovery in MEG decoding using multi-task joint feature learning.
    Kia SM; Pedregosa F; Blumenthal A; Passerini A
    J Neurosci Methods; 2017 Jun; 285():97-108. PubMed ID: 28495369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetoencephalogram-based brain-computer interface for hand-gesture decoding using deep learning.
    Bu Y; Harrington DL; Lee RR; Shen Q; Angeles-Quinto A; Ji Z; Hansen H; Hernandez-Lucas J; Baumgartner J; Song T; Nichols S; Baker D; Rao R; Lerman I; Lin T; Tu XM; Huang M
    Cereb Cortex; 2023 Jul; 33(14):8942-8955. PubMed ID: 37183188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Group-level brain decoding with deep learning.
    Csaky R; van Es MWJ; Jones OP; Woolrich M
    Hum Brain Mapp; 2023 Dec; 44(17):6105-6119. PubMed ID: 37753636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy.
    Combrisson E; Jerbi K
    J Neurosci Methods; 2015 Jul; 250():126-36. PubMed ID: 25596422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive neural network classifier for decoding MEG signals.
    Zubarev I; Zetter R; Halme HL; Parkkonen L
    Neuroimage; 2019 Aug; 197():425-434. PubMed ID: 31059799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization.
    Farahat A; Reichert C; Sweeney-Reed CM; Hinrichs H
    J Neural Eng; 2019 Oct; 16(6):066010. PubMed ID: 31416059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification.
    Li L; Sun N
    Comput Intell Neurosci; 2022; 2022():8187009. PubMed ID: 35571721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Model-Agnostic Feature Attribution Approach to Magnetoencephalography Predictions Based on Shapley Value.
    Fan Y; Mao H; Li Q
    IEEE J Biomed Health Inform; 2023 May; 27(5):2524-2535. PubMed ID: 37027633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data.
    Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C
    Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LMDA-Net:A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability.
    Miao Z; Zhao M; Zhang X; Ming D
    Neuroimage; 2023 Aug; 276():120209. PubMed ID: 37269957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolutional neural networks for decoding electroencephalography responses and visualizing trial by trial changes in discriminant features.
    Aellen FM; Göktepe-Kavis P; Apostolopoulos S; Tzovara A
    J Neurosci Methods; 2021 Dec; 364():109367. PubMed ID: 34563599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing impact of channel selection on decoding of motor and cognitive imagery from MEG data.
    Roy S; Rathee D; Chowdhury A; McCreadie K; Prasad G
    J Neural Eng; 2020 Oct; 17(5):056037. PubMed ID: 32998113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Across-subject offline decoding of motor imagery from MEG and EEG.
    Halme HL; Parkkonen L
    Sci Rep; 2018 Jul; 8(1):10087. PubMed ID: 29973645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding movement kinematics from EEG using an interpretable convolutional neural network.
    Borra D; Mondini V; Magosso E; Müller-Putz GR
    Comput Biol Med; 2023 Oct; 165():107323. PubMed ID: 37619325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Temporal Dependency Learning CNN With Attention Mechanism for MI-EEG Decoding.
    Ma X; Chen W; Pei Z; Liu J; Huang B; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3188-3200. PubMed ID: 37498754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding and interpreting cortical signals with a compact convolutional neural network.
    Petrosyan A; Sinkin M; Lebedev M; Ossadtchi A
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33524962
    [No Abstract]   [Full Text] [Related]  

  • 18. Interpretable and lightweight convolutional neural network for EEG decoding: Application to movement execution and imagination.
    Borra D; Fantozzi S; Magosso E
    Neural Netw; 2020 Sep; 129():55-74. PubMed ID: 32502798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Space-by-time decomposition for single-trial decoding of M/EEG activity.
    Delis I; Onken A; Schyns PG; Panzeri S; Philiastides MG
    Neuroimage; 2016 Jun; 133():504-515. PubMed ID: 27033682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding.
    Nakagome S; Luu TP; He Y; Ravindran AS; Contreras-Vidal JL
    Sci Rep; 2020 Mar; 10(1):4372. PubMed ID: 32152333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.