These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37805502)

  • 21. Identifying active sites of boron, nitrogen co-doped carbon materials for the oxygen reduction reaction to hydrogen peroxide.
    Li X; Wang X; Xiao G; Zhu Y
    J Colloid Interface Sci; 2021 Nov; 602():799-809. PubMed ID: 34171746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coordination Engineering of Defective Cobalt-Nitrogen-Carbon Electrocatalysts with Graphene Quantum Dots for Boosting Oxygen Reduction Reaction.
    Geng D; Huang Y; Yuan S; Jiang Y; Ren H; Zhang S; Liu Z; Feng J; Wei T; Fan Z
    Small; 2023 May; 19(18):e2207227. PubMed ID: 36720006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of Electrocatalytic Activity by Local Microstructure: Focusing on the Catalytic Active Zone.
    Bian J; Wei C; Wen Y; Zhang B
    Chemistry; 2022 Feb; 28(8):e202103141. PubMed ID: 34734654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly.
    Zhou D; Li P; Lin X; McKinley A; Kuang Y; Liu W; Lin WF; Sun X; Duan X
    Chem Soc Rev; 2021 Aug; 50(15):8790-8817. PubMed ID: 34160484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives.
    Kundu A; Kuila T; Murmu NC; Samanta P; Das S
    Mater Horiz; 2023 Mar; 10(3):745-787. PubMed ID: 36594186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries.
    Kundu A; Mallick S; Ghora S; Raj CR
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40172-40199. PubMed ID: 34424683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uncovering the Nature of Active Sites during Electrocatalytic Reactions by
    Cao L; Liu X; Shen X; Wu D; Yao T
    Acc Chem Res; 2022 Sep; 55(18):2594-2603. PubMed ID: 36044043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First-Principles Determination of Active Sites of Ni Metal-Based Electrocatalysts for Hydrogen Evolution Reaction.
    Dong Y; Dang J; Wang W; Yin S; Wang Y
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39624-39630. PubMed ID: 30362712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boosting photocatalytic hydrogen peroxide production by regulating electronic configuration of single Sb atoms via carbon vacancies in carbon nitrides.
    He Q; Ding J; Tsai HJ; Liu Y; Wei M; Zhang Q; Wei Z; Chen Z; Huang J; Hung SF; Yang H; Zhai Y
    J Colloid Interface Sci; 2023 Dec; 651():18-26. PubMed ID: 37536256
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Fan XZ; Du X; Pang QQ; Zhang S; Liu ZY; Yue XZ
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8549-8556. PubMed ID: 35129345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media.
    Gao J; Tao H; Liu B
    Adv Mater; 2021 Aug; 33(31):e2003786. PubMed ID: 34169587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrogen-Doped Graphene on Transition Metal Substrates as Efficient Bifunctional Catalysts for Oxygen Reduction and Oxygen Evolution Reactions.
    Zhou S; Liu N; Wang Z; Zhao J
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22578-22587. PubMed ID: 28621128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A molecular approach to an electrocatalytic hydrogen evolution reaction on single-layer graphene.
    Seo S; Lee K; Min M; Cho Y; Kim M; Lee H
    Nanoscale; 2017 Mar; 9(11):3969-3979. PubMed ID: 28266680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward Activity Origin of Electrocatalytic Hydrogen Evolution Reaction on Carbon-Rich Crystalline Coordination Polymers.
    Wang L; Tranca DC; Zhang J; Qi Y; Sfaelou S; Zhang T; Dong R; Zhuang X; Zheng Z; Seifert G
    Small; 2017 Oct; 13(37):. PubMed ID: 28741854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen Species on Nitrogen-Doped Carbon Nanosheets as Efficient Active Sites for Multiple Electrocatalysis.
    Lv JJ; Li Y; Wu S; Fang H; Li LL; Song RB; Ma J; Zhu JJ
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11678-11688. PubMed ID: 29570274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Dimensionality and Doping in Quasi-"One-Dimensional (1-D)" Nitrogen-Doped Graphene Nanoribbons on the Oxygen Reduction Reaction.
    Kundu S; Malik B; Pattanayak DK; Pillai VK
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38409-38418. PubMed ID: 29028352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Situ Exfoliated, Edge-Rich, Oxygen-Functionalized Graphene from Carbon Fibers for Oxygen Electrocatalysis.
    Liu Z; Zhao Z; Wang Y; Dou S; Yan D; Liu D; Xia Z; Wang S
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28276154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction.
    Seo B; Joo SH
    Nano Converg; 2017; 4(1):19. PubMed ID: 28798900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Several Key Factors for Efficient Electrocatalytic Water Splitting: Active Site Coordination Environment, Morphology Changes and Intermediates Identification.
    Hu C; Hu Y; Zhu A; Li M; Wei J; Zhang Y; Xie W
    Chemistry; 2022 Jun; 28(36):e202200138. PubMed ID: 35441499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.