These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37805632)

  • 1. Adaptive structure evolution and biologically plausible synaptic plasticity for recurrent spiking neural networks.
    Pan W; Zhao F; Zeng Y; Han B
    Sci Rep; 2023 Oct; 13(1):16924. PubMed ID: 37805632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An unsupervised STDP-based spiking neural network inspired by biologically plausible learning rules and connections.
    Dong Y; Zhao D; Li Y; Zeng Y
    Neural Netw; 2023 Aug; 165():799-808. PubMed ID: 37418862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introducing principles of synaptic integration in the optimization of deep neural networks.
    Dellaferrera G; Woźniak S; Indiveri G; Pantazi A; Eleftheriou E
    Nat Commun; 2022 Apr; 13(1):1885. PubMed ID: 35393422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
    Beyeler M; Dutt ND; Krichmar JL
    Neural Netw; 2013 Dec; 48():109-24. PubMed ID: 23994510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organization of an inhomogeneous memristive hardware for sequence learning.
    Payvand M; Moro F; Nomura K; Dalgaty T; Vianello E; Nishi Y; Indiveri G
    Nat Commun; 2022 Oct; 13(1):5793. PubMed ID: 36184665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-inspired neural circuit evolution for spiking neural networks.
    Shen G; Zhao D; Dong Y; Zeng Y
    Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2218173120. PubMed ID: 37729206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Hybrid CMOS-Memristor Spiking Neural Network Supporting Multiple Learning Rules.
    Florini D; Gandolfi D; Mapelli J; Benatti L; Pavan P; Puglisi FM
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5117-5129. PubMed ID: 36099218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended liquid state machines for speech recognition.
    Deckers L; Tsang IJ; Van Leekwijck W; Latré S
    Front Neurosci; 2022; 16():1023470. PubMed ID: 36389242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Brain-Inspired Decision-Making Spiking Neural Network and Its Application in Unmanned Aerial Vehicle.
    Zhao F; Zeng Y; Xu B
    Front Neurorobot; 2018; 12():56. PubMed ID: 30258359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal Coding in Spiking Neural Networks With Alpha Synaptic Function: Learning With Backpropagation.
    Comsa IM; Potempa K; Versari L; Fischbacher T; Gesmundo A; Alakuijala J
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5939-5952. PubMed ID: 33900924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Digital Liquid State Machine With Biologically Inspired Learning and Its Application to Speech Recognition.
    Zhang Y; Li P; Jin Y; Choe Y
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2635-49. PubMed ID: 25643415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of learning in biologically plausible spiking neural networks.
    Taherkhani A; Belatreche A; Li Y; Cosma G; Maguire LP; McGinnity TM
    Neural Netw; 2020 Feb; 122():253-272. PubMed ID: 31726331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composing recurrent spiking neural networks using locally-recurrent motifs and risk-mitigating architectural optimization.
    Zhang W; Geng H; Li P
    Front Neurosci; 2024; 18():1412559. PubMed ID: 38966757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-Inspired Evolutionary Model of Spiking Neural Networks in Ionic Liquid Space.
    Iranmehr E; Shouraki SB; Faraji MM; Bagheri N; Linares-Barranco B
    Front Neurosci; 2019; 13():1085. PubMed ID: 31787863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HybridSNN: Combining Bio-Machine Strengths by Boosting Adaptive Spiking Neural Networks.
    Shen J; Zhao Y; Liu JK; Wang Y
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5841-5855. PubMed ID: 34890341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a Brain-Inspired Spiking Neural Network Architecture to Odor Data Classification.
    Vanarse A; Espinosa-Ramos JI; Osseiran A; Rassau A; Kasabov N
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32408563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolving Dual-Threshold Bienenstock-Cooper-Munro Learning Rules in Echo State Networks.
    Wang X; Jin Y; Du W; Wang J
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; 35(2):1572-1583. PubMed ID: 35763483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of Biologically Inspired Neural Network Models in Learning and Patterns Memorization.
    Squadrani L; Curti N; Giampieri E; Remondini D; Blais B; Castellani G
    Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626566
    [No Abstract]   [Full Text] [Related]  

  • 20. Deep Liquid State Machines With Neural Plasticity for Video Activity Recognition.
    Soures N; Kudithipudi D
    Front Neurosci; 2019; 13():686. PubMed ID: 31333404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.