These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37806057)

  • 1. PAMPred: A hierarchical evolutionary ensemble framework for identifying plant antimicrobial peptides.
    Wang Z; Meng J; Li H; Xia S; Wang Y; Luan Y
    Comput Biol Med; 2023 Nov; 166():107545. PubMed ID: 37806057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting miRNA-disease associations using an ensemble learning framework with resampling method.
    Dai Q; Wang Z; Liu Z; Duan X; Song J; Guo M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient hybrid deep learning architecture for predicting short antimicrobial peptides.
    Nguyen QH; Nguyen-Vo TH; Do TTT; Nguyen BP
    Proteomics; 2024 Jul; 24(14):e2300382. PubMed ID: 38837544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs.
    Lertampaiporn S; Vorapreeda T; Hongsthong A; Thammarongtham C
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33494403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Overview of Databases and Bioinformatics Tools for Plant Antimicrobial Peptides.
    Quintans ILADCR; de Araújo JVA; Rocha LNM; de Andrade AEB; do Rêgo TG; Deyholos MK
    Curr Protein Pept Sci; 2022; 23(1):6-19. PubMed ID: 34951361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AniAMPpred: artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom.
    Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34259329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPpred-EL: An effective antimicrobial peptide prediction model based on ensemble learning.
    Lv H; Yan K; Guo Y; Zou Q; Hesham AE; Liu B
    Comput Biol Med; 2022 Jul; 146():105577. PubMed ID: 35576825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types.
    Xiao X; Shao YT; Cheng X; Stamatovic B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Feature Fusion Predictor for RNA Pseudouridine Sites with Particle Swarm Optimizer Based Feature Selection and Ensemble Learning Approach.
    Wang X; Lin X; Wang R; Han N; Fan K; Han L; Ding Z
    Curr Issues Mol Biol; 2021 Nov; 43(3):1844-1858. PubMed ID: 34889887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EnAMP: A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features.
    Zhuang J; Gao W; Su R
    J Bioinform Comput Biol; 2024 Feb; 22(1):2450001. PubMed ID: 38406833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.
    Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel antibacterial peptide recognition algorithm based on BERT.
    Zhang Y; Lin J; Zhao L; Zeng X; Liu X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. StackIL6: a stacking ensemble model for improving the prediction of IL-6 inducing peptides.
    Charoenkwan P; Chiangjong W; Nantasenamat C; Hasan MM; Manavalan B; Shoombuatong W
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33963832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomedical Text Categorization Based on Ensemble Pruning and Optimized Topic Modelling.
    Onan A
    Comput Math Methods Med; 2018; 2018():2497471. PubMed ID: 30140300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel hierarchical selective ensemble classifier with bioinformatics application.
    Wei L; Wan S; Guo J; Wong KK
    Artif Intell Med; 2017 Nov; 83():82-90. PubMed ID: 28245947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel stacking-based predictor for accurate prediction of antimicrobial peptides.
    Kanwal S; Arif R; Ahmed S; Kabir M
    J Biomol Struct Dyn; 2024 Mar; ():1-12. PubMed ID: 38500243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RBPLight: a computational tool for discovery of plant-specific RNA-binding proteins using light gradient boosting machine and ensemble of evolutionary features.
    Pradhan UK; Meher PK; Naha S; Pal S; Gupta S; Gupta A; Parsad R
    Brief Funct Genomics; 2023 Nov; 22(5):401-410. PubMed ID: 37158175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid ensemble and evolutionary algorithm for imbalanced classification and its application on bioinformatics.
    Zhang Y; Lin M; Yang Y; Ding C
    Comput Biol Chem; 2022 Jun; 98():107646. PubMed ID: 35240419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.