These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 37806067)

  • 21. Infrared tympanic thermometry in the pediatric intensive care unit.
    Romano MJ; Fortenberry JD; Autrey E; Harris S; Heyroth T; Parmeter P; Stein F
    Crit Care Med; 1993 Aug; 21(8):1181-5. PubMed ID: 8339584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of age on the temperature of the anterior segment of the eye. Measurements by infrared thermometry.
    Aliò J; Padron M
    Ophthalmic Res; 1982; 14(3):153-9. PubMed ID: 7099534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Infrared tympanic thermometry in comparison with other temperature measurement techniques in febrile children.
    Nimah MM; Bshesh K; Callahan JD; Jacobs BR
    Pediatr Crit Care Med; 2006 Jan; 7(1):48-55. PubMed ID: 16395075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of physiological strain in hot work areas using thermal imagery.
    Holm CA; Pahler L; Thiese MS; Handy R
    J Therm Biol; 2016 Oct; 61():8-15. PubMed ID: 27712664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prognostic value of infrared thermography in an emergency department.
    Holm JK; Kellett JG; Jensen NH; Hansen SN; Jensen K; Brabrand M
    Eur J Emerg Med; 2018 Jun; 25(3):204-208. PubMed ID: 28002090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Body temperature of healthy men evaluated by thermography: A study of reproducibility.
    Alfieri FM; Battistella LR
    Technol Health Care; 2018; 26(3):559-564. PubMed ID: 29578493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony.
    Darwent D; Ferguson SA; Sargent C; Paech GM; Williams L; Zhou X; Matthews RW; Dawson D; Kennaway DJ; Roach GD
    Chronobiol Int; 2010 Jul; 27(5):898-910. PubMed ID: 20636204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conventional and novel body temperature measurement during rest and exercise induced hyperthermia.
    Towey C; Easton C; Simpson R; Pedlar C
    J Therm Biol; 2017 Jan; 63():124-130. PubMed ID: 28010810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of temporal artery thermometer to standard temperature measurements in pediatric intensive care unit patients.
    Hebbar K; Fortenberry JD; Rogers K; Merritt R; Easley K
    Pediatr Crit Care Med; 2005 Sep; 6(5):557-61. PubMed ID: 16148817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of dynamic ocular surface temperature in healthy subjects using a new thermography device.
    Klamann MK; Maier AK; Gonnermann J; Klein JP; Pleyer U
    Curr Eye Res; 2012 Aug; 37(8):678-83. PubMed ID: 22559822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of tympanic and rectal temperatures in term Nigerian neonates.
    Duru CO; Akinbami FO; Orimadegun AE
    BMC Pediatr; 2012 Jun; 12():86. PubMed ID: 22731860
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of thermography in pigs: relationship between surface and core temperature.
    Barbieri S; Talamonti Z; Nannoni E; Heinzl EUL; Minero M; Canali E
    Vet Ital; 2021 May; 57(1):79-82. PubMed ID: 34313101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of rectal and infrared thermometry for obtaining body temperature in cynomolgus macaques (Macaca fascicularis).
    Sikoski P; Banks ML; Gould R; Young RW; Wallace JM; Nader MA
    J Med Primatol; 2007 Dec; 36(6):381-4. PubMed ID: 17976044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monitoring changes in body surface temperature associated with treadmill exercise in dogs by use of infrared methodology.
    Rizzo M; Arfuso F; Alberghina D; Giudice E; Gianesella M; Piccione G
    J Therm Biol; 2017 Oct; 69():64-68. PubMed ID: 29037406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the reliability of thermography to infer internal body temperatures of lizards.
    Barroso FM; Carretero MA; Silva F; Sannolo M
    J Therm Biol; 2016 Dec; 62(Pt A):90-96. PubMed ID: 27839556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of Rectal and Infrared Thermometry Temperatures in Anesthetized Swine (
    Farrar KL; Field AE; Norris SL; Jacobsen KO
    J Am Assoc Lab Anim Sci; 2020 Mar; 59(2):221-225. PubMed ID: 32075698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diagnostic accuracy of three different methods of temperature measurement in acutely ill geriatric patients.
    Singler K; Bertsch T; Heppner HJ; Kob R; Hammer K; Biber R; Sieber CC; Christ M
    Age Ageing; 2013 Nov; 42(6):740-6. PubMed ID: 24038772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Methods for core temperature measurements].
    Moran DS; Mendel L
    Harefuah; 2001 Nov; 140(11):1078-83, 116. PubMed ID: 11759386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reliability of an infrared forehead skin thermometer for core temperature measurements.
    Kistemaker JA; Den Hartog EA; Daanen HA
    J Med Eng Technol; 2006; 30(4):252-61. PubMed ID: 16864237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of human circadian phase via a multi-channel ambulatory monitoring system and a multiple regression model.
    Kolodyazhniy V; Späti J; Frey S; Götz T; Wirz-Justice A; Kräuchi K; Cajochen C; Wilhelm FH
    J Biol Rhythms; 2011 Feb; 26(1):55-67. PubMed ID: 21252366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.