These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37806238)
1. RaT: Raman Transformer for highly accurate melanoma detection with critical features visualization. Chang M; He C; Du Y; Qiu Y; Wang L; Chen H Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123475. PubMed ID: 37806238 [TBL] [Abstract][Full Text] [Related]
2. Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue. Gniadecka M; Philipsen PA; Sigurdsson S; Wessel S; Nielsen OF; Christensen DH; Hercogova J; Rossen K; Thomsen HK; Gniadecki R; Hansen LK; Wulf HC J Invest Dermatol; 2004 Feb; 122(2):443-9. PubMed ID: 15009728 [TBL] [Abstract][Full Text] [Related]
3. Discrimination of non-melanoma skin lesions from non-tumor human skin tissues in vivo using Raman spectroscopy and multivariate statistics. Silveira FL; Pacheco MT; Bodanese B; Pasqualucci CA; Zângaro RA; Silveira L Lasers Surg Med; 2015 Jan; 47(1):6-16. PubMed ID: 25583686 [TBL] [Abstract][Full Text] [Related]
5. Discrimination of basal cell carcinoma and melanoma from normal skin biopsies in vitro through Raman spectroscopy and principal component analysis. Bodanese B; Silveira FL; Zângaro RA; Pacheco MT; Pasqualucci CA; Silveira L Photomed Laser Surg; 2012 Jul; 30(7):381-7. PubMed ID: 22693951 [TBL] [Abstract][Full Text] [Related]
6. Using Raman Spectroscopy to Detect and Diagnose Skin Cancer In Vivo. Zhao J; Zeng H; Kalia S; Lui H Dermatol Clin; 2017 Oct; 35(4):495-504. PubMed ID: 28886805 [TBL] [Abstract][Full Text] [Related]
7. Differentiating normal and basal cell carcinoma human skin tissues in vitro using dispersive Raman spectroscopy: a comparison between principal components analysis and simplified biochemical models. Bodanese B; Silveira L; Albertini R; Zângaro RA; Pacheco MT Photomed Laser Surg; 2010 Aug; 28 Suppl 1():S119-27. PubMed ID: 20649423 [TBL] [Abstract][Full Text] [Related]
8. Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning. Araújo DC; Veloso AA; de Oliveira Filho RS; Giraud MN; Raniero LJ; Ferreira LM; Bitar RA Artif Intell Med; 2021 Oct; 120():102161. PubMed ID: 34629149 [TBL] [Abstract][Full Text] [Related]
9. Detection of skin cancer by classification of Raman spectra. Sigurdsson S; Philipsen PA; Hansen LK; Larsen J; Gniadecka M; Wulf HC IEEE Trans Biomed Eng; 2004 Oct; 51(10):1784-93. PubMed ID: 15490825 [TBL] [Abstract][Full Text] [Related]
10. Comment on "Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning". Bratchenko IA; Bratchenko LA Artif Intell Med; 2022 Mar; 125():102252. PubMed ID: 35241262 [TBL] [Abstract][Full Text] [Related]
11. Combining fiber optical tweezers and Raman spectroscopy for rapid identification of melanoma. Qiu X; He T; Wu X; Wang P; Wang X; Fu Q; Fang X; Li S; Li Y J Biophotonics; 2022 Dec; 15(12):e202200158. PubMed ID: 36053940 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of human melanoma and normal formalin paraffin-fixed samples using Raman and LIBS fused data. Khan MN; Wang Q; Idrees BS; Teng G; Xiangli W; Cui X; Wei K Lasers Med Sci; 2022 Jul; 37(5):2489-2499. PubMed ID: 35098374 [TBL] [Abstract][Full Text] [Related]
13. Analysis of indole and indazole amides synthetic cannabinoids by differential Raman spectroscopy based on ANN. Lee J; Jiang H J Forensic Sci; 2022 Nov; 67(6):2242-2252. PubMed ID: 36069004 [TBL] [Abstract][Full Text] [Related]
14. In vivo study for the discrimination of cancerous and normal skin using fibre probe-based Raman spectroscopy. Schleusener J; Gluszczynska P; Reble C; Gersonde I; Helfmann J; Fluhr JW; Lademann J; Röwert-Huber J; Patzelt A; Meinke MC Exp Dermatol; 2015 Oct; 24(10):767-72. PubMed ID: 26010742 [TBL] [Abstract][Full Text] [Related]
15. Detection of pancreatic cancer by convolutional-neural-network-assisted spontaneous Raman spectroscopy with critical feature visualization. Li Z; Li Z; Chen Q; Ramos A; Zhang J; Boudreaux JP; Thiagarajan R; Bren-Mattison Y; Dunham ME; McWhorter AJ; Li X; Feng JM; Li Y; Yao S; Xu J Neural Netw; 2021 Dec; 144():455-464. PubMed ID: 34583101 [TBL] [Abstract][Full Text] [Related]
17. Accuracy of Raman spectroscopy for differentiating skin cancer from normal tissue. Zhang J; Fan Y; Song Y; Xu J Medicine (Baltimore); 2018 Aug; 97(34):e12022. PubMed ID: 30142850 [TBL] [Abstract][Full Text] [Related]
18. Digital dewaxing of Raman signals: discrimination between nevi and melanoma spectra obtained from paraffin-embedded skin biopsies. Tfayli A; Gobinet C; Vrabie V; Huez R; Manfait M; Piot O Appl Spectrosc; 2009 May; 63(5):564-70. PubMed ID: 19470215 [TBL] [Abstract][Full Text] [Related]
19. Paraconsistent analysis network applied in the treatment of Raman spectroscopy data to support medical diagnosis of skin cancer. Da Silva Filho JI; Vander Nunes C; Garcia DV; Mario MC; Giordano F; Abe JM; Pacheco MT; Silveira L Med Biol Eng Comput; 2016 Oct; 54(10):1453-67. PubMed ID: 27021066 [TBL] [Abstract][Full Text] [Related]
20. In vivo diagnosis of skin cancer with a portable Raman spectroscopic device. Bratchenko IA; Bratchenko LA; Moryatov AA; Khristoforova YA; Artemyev DN; Myakinin OO; Orlov AE; Kozlov SV; Zakharov VP Exp Dermatol; 2021 May; 30(5):652-663. PubMed ID: 33566431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]