These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37807050)

  • 1. Improvement of ethanol and 2,3-butanediol production in Saccharomyces cerevisiae by ATP wasting.
    Yatabe F; Seike T; Okahashi N; Ishii J; Matsuda F
    Microb Cell Fact; 2023 Oct; 22(1):204. PubMed ID: 37807050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved 2,3-Butanediol Production Rate of Metabolically Engineered
    Sugimura M; Seike T; Okahashi N; Izumi Y; Bamba T; Ishii J; Matsuda F
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003568
    [No Abstract]   [Full Text] [Related]  

  • 3. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.
    Yamada R; Nishikawa R; Wakita K; Ogino H
    J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioengineering for the industrial production of 2,3-butanediol by the yeast, Saccharomyces cerevisiae.
    Mitsui R; Yamada R; Matsumoto T; Ogino H
    World J Microbiol Biotechnol; 2022 Jan; 38(3):38. PubMed ID: 35018511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production.
    Kim SJ; Kim JW; Lee YG; Park YC; Seo JH
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2241-2250. PubMed ID: 28204883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli.
    Boecker S; Harder BJ; Kutscha R; Pflügl S; Klamt S
    Microb Cell Fact; 2021 Mar; 20(1):63. PubMed ID: 33750397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pyruvate carbon flux tugging strategy for increasing 2,3-butanediol production and reducing ethanol subgeneration in the yeast
    Ishii J; Morita K; Ida K; Kato H; Kinoshita S; Hataya S; Shimizu H; Kondo A; Matsuda F
    Biotechnol Biofuels; 2018; 11():180. PubMed ID: 29983743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.
    Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATPase-based implementation of enforced ATP wasting in Saccharomyces cerevisiae for improved ethanol production.
    Zahoor A; Messerschmidt K; Boecker S; Klamt S
    Biotechnol Biofuels; 2020 Nov; 13(1):185. PubMed ID: 33292464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid
    Lee YG; Seo JH
    Biotechnol Biofuels; 2019; 12():204. PubMed ID: 31485270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca.
    Lee YG; Bae JM; Kim SJ
    J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative
    Yatabe F; Okahashi N; Seike T; Matsuda F
    Biotechnol J; 2022 Mar; 17(3):e2000438. PubMed ID: 33983677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.
    Seong YJ; Park H; Yang J; Kim SJ; Choi W; Kim KH; Park YC
    Appl Microbiol Biotechnol; 2017 May; 101(9):3567-3575. PubMed ID: 28168313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing.
    Kim S; Hahn JS
    Metab Eng; 2015 Sep; 31():94-101. PubMed ID: 26226562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced production of 2,3-butanediol from xylose by combinatorial engineering of xylose metabolic pathway and cofactor regeneration in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim SJ; Sim HJ; Kim JW; Lee YG; Park YC; Seo JH
    Bioresour Technol; 2017 Dec; 245(Pt B):1551-1557. PubMed ID: 28651874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of futile cycles as an approach to increase ethanol yield during glucose fermentation in Saccharomyces cerevisiae.
    Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA
    Bioengineered; 2016 Apr; 7(2):106-11. PubMed ID: 26890808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Engineered
    Choi HJ; Jin YS; Lee WH
    J Microbiol Biotechnol; 2022 Jan; 32(1):117-125. PubMed ID: 34949751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.
    Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS
    J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents.
    Kim SK; Jo JH; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2017 May; 40(5):683-691. PubMed ID: 28120125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.