BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 3780727)

  • 1. Effects of long-chain fatty acids on the inhibition by antimycin of respiration in hepatocytes and isolated mitochondria from rat liver.
    Gregory RB; Berry MN
    Eur J Biochem; 1986 Nov; 160(3):645-9. PubMed ID: 3780727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters.
    Chase JF; Tubbs PK
    Biochem J; 1972 Aug; 129(1):55-65. PubMed ID: 4646779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of stimulation of respiration by fatty acids in isolated hepatocytes.
    Nobes CD; Hay WW; Brand MD
    J Biol Chem; 1990 Aug; 265(22):12910-5. PubMed ID: 2376580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimycin inhibition as a probe of mitochondrial function in isolated rat hepatocytes. Effects of chronic ethanol consumption.
    Thayer WS; Rubin E
    Biochim Biophys Acta; 1982 Dec; 721(4):328-35. PubMed ID: 6891602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrelationships and metabolic effects of fatty acids in the perfused rat liver at hyperthermic temperatures.
    Denor PF; Sonsalla JC; Menahan LA; Skibba JL
    Cancer Biochem Biophys; 1985 Jun; 8(1):9-22. PubMed ID: 4027946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of fatty acids on energy metabolism. 1. Stimulation of oxygen consumption, ketogenesis and CO2 production following addition of octanoate and oleate in perfused rat liver.
    Scholz R; Schwabe U; Soboll S
    Eur J Biochem; 1984 May; 141(1):223-30. PubMed ID: 6426957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of branched chain alpha-ketoacids on the metabolism of isolated rat liver cells. I. Regulation of branched chain alpha-ketoacid metabolism.
    Williamson JR; Wałajtys-Rode E; Coll KE
    J Biol Chem; 1979 Nov; 254(22):11511-20. PubMed ID: 500655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of fatty acid oxidation in isolated hepatocytes and liver mitochondria from newborn rabbits.
    Herbin C; Pegorier JP; Duee PH; Kohl C; Girard J
    Eur J Biochem; 1987 May; 165(1):201-7. PubMed ID: 3569293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation of oxidation of long-chain fatty acids to gluconeogenesis in the perfused liver of the guinea pig: effect of 2-tetradecylglycidic acid (McN-3802).
    Tutwiler GF; Brentzel HJ
    Eur J Biochem; 1982 Jun; 124(3):465-70. PubMed ID: 7106101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of the so-called uncoupling effect of medium- and short-chain fatty acids.
    Schönfeld P; Wojtczak AB; Geelen MJ; Kunz W; Wojtczak L
    Biochim Biophys Acta; 1988 Dec; 936(3):280-8. PubMed ID: 3196710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents.
    Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP
    Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoethlenic C20 and C22 fatty acids in marine oil and rapeseed oil. Studies on their oxidation and on their relative ability to inhibit palmitate oxidation in heart and liver mitochondria.
    Christiansen RZ; Christophersen BO; Bremer J
    Biochim Biophys Acta; 1977 Apr; 487(1):28-36. PubMed ID: 870057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dietary fat on total and peroxisomal fatty acid oxidation in rat tissues.
    Veerkamp JH; Zevenbergen JL
    Biochim Biophys Acta; 1986 Aug; 878(1):102-9. PubMed ID: 3730409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The action of vasopressin and calcium on palmitate metabolism in hepatocytes and isolated mitochondria from rat liver.
    Almås I; Singh B; Borrebaek B
    Arch Biochem Biophys; 1983 Apr; 222(2):370-9. PubMed ID: 6847192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ
    Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical effects of the hypoglycaemic compound pent--4-enoic acid and related non-hypoglycaemic fatty acids.
    Senior AE; Robson B; Sherratt HS
    Biochem J; 1968 Dec; 110(3):511-9. PubMed ID: 5701681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ethanol on the metabolism of free fatty acids in isolated liver cells.
    Ontko JA
    J Lipid Res; 1973 Jan; 14(1):78-86. PubMed ID: 4349663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decrease of fatty acid oxidation, ketogenesis and gluconeogenesis in isolated perfused rat liver by phenylalkyl oxirane carboxylate (B 807-27) due to inhibition of CPT I (EC 2.3.1.21).
    Wolf HP; Engel DW
    Eur J Biochem; 1985 Jan; 146(2):359-63. PubMed ID: 4038486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gluconeogenic dependence on ketogenesis in isolated sheep hepatocytes.
    Chow JC; Planck-Meyer C; Jesse BW
    J Dairy Sci; 1990 Mar; 73(3):683-9. PubMed ID: 2341643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of respiration in mitochondria and in digitonin-treated rat hepatocytes by podophyllotoxin.
    Horrum MA; Jennett RB; Ecklund RE; Tobin RB
    Mol Cell Biochem; 1986 Jun; 71(1):79-85. PubMed ID: 3724750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.