BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3780738)

  • 1. Properties of different Ca2+ pools in permeabilized rat thymocytes.
    Gukovskaya AS; Zinchenko VP; Petrunyaka VV; Khodorov BI; Evtodienko YV
    Eur J Biochem; 1986 Nov; 161(1):249-56. PubMed ID: 3780738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+ homeostasis in permeabilized human neutrophils. Characterization of Ca2+-sequestering pools and the action of inositol 1,4,5-triphosphate.
    Prentki M; Wollheim CB; Lew PD
    J Biol Chem; 1984 Nov; 259(22):13777-82. PubMed ID: 6334080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+ transport by digitonin-permeabilized Leishmania donovani. Effects of Ca2+, pentamidine and WR-6026 on mitochondrial membrane potential in situ.
    Vercesi AE; Docampo R
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):463-7. PubMed ID: 1376113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium homeostasis in digitonin-permeabilized bovine chromaffin cells.
    Kao LS
    J Neurochem; 1988 Jul; 51(1):221-7. PubMed ID: 2898003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium uptake and release characteristics of the dense tubules of digitonin-permeabilized human platelets.
    Jy W; Haynes DH
    Biochim Biophys Acta; 1988 Oct; 944(3):374-82. PubMed ID: 3263146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inositol 1,4,5-trisphosphate and the endoplasmic reticulum Ca2+ cycle of a rat insulinoma cell line.
    Prentki M; Corkey BE; Matschinsky FM
    J Biol Chem; 1985 Aug; 260(16):9185-90. PubMed ID: 2991236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H+-dependent calcium uptake into an IP3-sensitive calcium pool from rat parotid gland.
    Thévenod F; Schulz I
    Am J Physiol; 1988 Oct; 255(4 Pt 1):G429-40. PubMed ID: 3263053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobilization of Ca2+ stores in individual pancreatic beta-cells permeabilized or not with digitonin or alpha-toxin.
    Tengholm A; Hellman B; Gylfe E
    Cell Calcium; 2000 Jan; 27(1):43-51. PubMed ID: 10726210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of cytosolic free calcium by intracellular organelles in bovine adrenal glomerulosa cells. Effects of sodium and inositol 1,4,5-trisphosphate.
    Rossier MF; Krause KH; Lew PD; Capponi AM; Vallotton MB
    J Biol Chem; 1987 Mar; 262(9):4053-8. PubMed ID: 2435728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of intracellular calcium redistribution by guanine nucleotides and inositol 1,4,5-trisphosphate in permeabilized GH4C1 cells.
    Koshiyama H; Tashjian AH
    Endocrinology; 1991 Jun; 128(6):2715-22. PubMed ID: 1903695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of calcium signal transmission from sarco-endoplasmic reticulum to the mitochondria.
    Pacher P; Csordás P; Schneider T; Hajnóczky G
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):553-64. PubMed ID: 11118489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of nonmitochondrial sequestered Ca2+ from permeabilized muscle cells in culture.
    Ambler SK; Taylor P
    Mol Pharmacol; 1989 Mar; 35(3):369-74. PubMed ID: 2784536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The digitonin-permeabilized pancreatic islet model. Effect of myo-inositol 1,4,5-trisphosphate on Ca2+ mobilization.
    Wolf BA; Comens PG; Ackermann KE; Sherman WR; McDaniel ML
    Biochem J; 1985 May; 227(3):965-9. PubMed ID: 3890834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of intracellular Ca2+ in the parathyroid cell. Release of Ca2+ from non-mitochondrial pools by inositol trisphosphate.
    Epstein PA; Prentki M; Attie MF
    FEBS Lett; 1985 Aug; 188(1):141-4. PubMed ID: 3874790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium homeostasis in Trypanosoma cruzi amastigotes: presence of inositol phosphates and lack of an inositol 1,4,5-trisphosphate-sensitive calcium pool.
    Moreno SN; Vercesi AE; Pignataro OP; Docampo R
    Mol Biochem Parasitol; 1992 Jun; 52(2):251-61. PubMed ID: 1620163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium homeostasis in procyclic and bloodstream forms of Trypanosoma brucei. Lack of inositol 1,4,5-trisphosphate-sensitive Ca2+ release.
    Moreno SN; Docampo R; Vercesi AE
    J Biol Chem; 1992 Mar; 267(9):6020-6. PubMed ID: 1556113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cholecystokinin-induced Ca2+ shuttle from the inositol trisphosphate-sensitive and ATP-dependent pool, and initial pepsinogen release connected with cytoskeleton of the chief cell.
    Tsunoda Y
    Biochim Biophys Acta; 1987 Jul; 901(1):35-51. PubMed ID: 3109480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of ATP-dependent Ca2+ uptake by permeabilized rat enterocytes. Effects of inositol 1,4,5-trisphosphate.
    van Corven EJ; Verbost PM; de Jong MD; van Os CH
    Cell Calcium; 1987 Jun; 8(3):197-206. PubMed ID: 3496969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of caffeine-, IP3- and vanadate-sensitive Ca2+ pools in acinar cells of the exocrine pancreas.
    Dehlinger-Kremer M; Zeuzem S; Schulz I
    J Membr Biol; 1991 Jan; 119(1):85-100. PubMed ID: 2008014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogenous arachidonic acid promotes insulin release from intact or permeabilized rat islets by dual mechanisms. Putative activation of Ca2+ mobilization and protein kinase C.
    Metz SA
    Diabetes; 1988 Nov; 37(11):1453-69. PubMed ID: 3141235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.