BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37807760)

  • 1. Safe-Harbor-Targeted CRISPR/Cas9 System and
    Liu Q; Meng G; Wang M; Li X; Liu M; Wang F; Yang Y; Dong C
    J Agric Food Chem; 2023 Oct; 71(41):15249-15260. PubMed ID: 37807760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient CRISPR/Cas9 system based on autonomously replicating plasmid with an AMA1 sequence and precisely targeted gene deletion in the edible fungus, Cordyceps militaris.
    Meng G; Wang X; Liu M; Wang F; Liu Q; Dong C
    Microb Biotechnol; 2022 Oct; 15(10):2594-2606. PubMed ID: 35829671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplex gene precise editing and large DNA fragment deletion by the CRISPR-Cas9-TRAMA system in edible mushroom Cordyceps militaris.
    Chen BX; Xue LN; Wei T; Wang N; Zhong JR; Ye ZW; Guo LQ; Lin JF
    Microb Biotechnol; 2022 Dec; 15(12):2982-2991. PubMed ID: 36134724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Transcriptomics Reveals Interspecific Interactions between the Mycoparasite
    Liu Q; Dong C
    Microbiol Spectr; 2023 Mar; 11(2):e0480022. PubMed ID: 36946736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eliciting Targeted Mutations in Medicago sativa Using CRISPR/Cas9-Mediated Genome Editing: A Potential Tool for the Improvement of Disease Resistance.
    Subedi U; Burton Hughes K; Chen G; Hannoufa A; Singer SD
    Methods Mol Biol; 2023; 2659():219-239. PubMed ID: 37249896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 mediated genome editing tools and their possible role in disease resistance mechanism.
    Kumari D; Prasad BD; Dwivedi P; Hidangmayum A; Sahni S
    Mol Biol Rep; 2022 Dec; 49(12):11587-11600. PubMed ID: 36104588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects.
    Ahmad S; Wei X; Sheng Z; Hu P; Tang S
    Brief Funct Genomics; 2020 Jan; 19(1):26-39. PubMed ID: 31915817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobin Gene
    Li X; Liu M; Dong C
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36902017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient disruption of CmHk1 using CRISPR/Cas9 ribonucleoprotein delivery in Cordyceps militaris.
    Choi H; Park SW; Oh J; Kim CS; Sung GH; Sang H
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 37475654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox.
    Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering broad-spectrum resistance to cotton leaf curl disease by CRISPR-Cas9 based multiplex editing in plants.
    Mubarik MS; Wang X; Khan SH; Ahmad A; Khan Z; Amjid MW; Razzaq MK; Ali Z; Azhar MT
    GM Crops Food; 2021 Dec; 12(2):647-658. PubMed ID: 34124996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobin CmHYD1 Is Involved in Conidiation, Infection and Primordium Formation, and Regulated by GATA Transcription Factor CmAreA in Edible Fungus,
    Li X; Wang F; Liu M; Dong C
    J Fungi (Basel); 2021 Aug; 7(8):. PubMed ID: 34436213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding.
    Antony Ceasar S; Ignacimuthu S
    Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome Editing of Rice by CRISPR-Cas: End-to-End Pipeline for Crop Improvement.
    Das A; Ghana P; Rudrappa B; Gandhi R; Tavva VS; Mohanty A
    Methods Mol Biol; 2021; 2238():115-134. PubMed ID: 33471328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture.
    Rao MJ; Wang L
    Planta; 2021 Sep; 254(4):68. PubMed ID: 34498163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses.
    Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP
    Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progresses of CRISPR/Cas9 genome editing in forage crops.
    Ul Haq SI; Zheng D; Feng N; Jiang X; Qiao F; He JS; Qiu QS
    J Plant Physiol; 2022 Dec; 279():153860. PubMed ID: 36371870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 to generate plant immunity against pathogen.
    Zaynab M; Sharif Y; Fatima M; Afzal MZ; Aslam MM; Raza MF; Anwar M; Raza MA; Sajjad N; Yang X; Li S
    Microb Pathog; 2020 Apr; 141():103996. PubMed ID: 31988004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.