BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37807912)

  • 1. The application of WaterMap-guided structure-based virtual screening in novel drug discovery.
    Kaczor AA; Zięba A; Matosiuk D
    Expert Opin Drug Discov; 2024; 19(1):73-83. PubMed ID: 37807912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculating Water Thermodynamics in the Binding Site of Proteins - Applications of WaterMap to Drug Discovery.
    Cappel D; Sherman W; Beuming T
    Curr Top Med Chem; 2017; 17(23):2586-2598. PubMed ID: 28413953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: the use of WaterMap.
    Yang Y; Lightstone FC; Wong SE
    Expert Opin Drug Discov; 2013 Mar; 8(3):277-87. PubMed ID: 23286874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shedding Light on Important Waters for Drug Design: Simulations versus Grid-Based Methods.
    Bucher D; Stouten P; Triballeau N
    J Chem Inf Model; 2018 Mar; 58(3):692-699. PubMed ID: 29489352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics as a Tool for Virtual Ligand Screening.
    Menchon G; Maveyraud L; Czaplicki G
    Methods Mol Biol; 2024; 2714():33-83. PubMed ID: 37676592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methodologies for the Examination of Water in GPCRs.
    Bortolato A; Tehan BG; Smith RT; Mason JS
    Methods Mol Biol; 2018; 1705():207-232. PubMed ID: 29188565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of machine learning approaches for novel drug discovery.
    Lima AN; Philot EA; Trossini GH; Scott LP; Maltarollo VG; Honorio KM
    Expert Opin Drug Discov; 2016; 11(3):225-39. PubMed ID: 26814169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the challenges of protein flexibility in drug design.
    Antunes DA; Devaurs D; Kavraki LE
    Expert Opin Drug Discov; 2015 Dec; 10(12):1301-13. PubMed ID: 26414598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design.
    Morency LP; Gaudreault F; Najmanovich R
    Methods Mol Biol; 2018; 1762():367-388. PubMed ID: 29594781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein structure-based drug design: from docking to molecular dynamics.
    Śledź P; Caflisch A
    Curr Opin Struct Biol; 2018 Feb; 48():93-102. PubMed ID: 29149726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics as a Tool for Virtual Ligand Screening.
    Menchon G; Maveyraud L; Czaplicki G
    Methods Mol Biol; 2018; 1762():145-178. PubMed ID: 29594772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing hydration sites in protein-ligand complexes towards the design of novel ligands.
    Matter H; Güssregen S
    Bioorg Med Chem Lett; 2018 Aug; 28(14):2343-2352. PubMed ID: 29880400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water Mapping and Scoring Approaches to Predict the Role of Hydration Sites in the Binding Affinity of PAK1 Inhibitors.
    Biswal J; Jayaprakash P; Rayala SK; Venkatraman G; Rangasamy R; Poopandi S; Jeyakanthan J
    Comb Chem High Throughput Screen; 2022; 25(4):660-676. PubMed ID: 33687876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancements in Docking and Molecular Dynamics Simulations Towards Ligand-receptor Interactions and Structure-function Relationships.
    Naqvi AAT; Mohammad T; Hasan GM; Hassan MI
    Curr Top Med Chem; 2018; 18(20):1755-1768. PubMed ID: 30360721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addressing limitations with the MM-GB/SA scoring procedure using the WaterMap method and free energy perturbation calculations.
    Guimarães CR; Mathiowetz AM
    J Chem Inf Model; 2010 Apr; 50(4):547-59. PubMed ID: 20235592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining label-free cell phenotypic profiling with computational approaches for novel drug discovery.
    Fang Y
    Expert Opin Drug Discov; 2015 Apr; 10(4):331-43. PubMed ID: 25727255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The compromise of virtual screening and its impact on drug discovery.
    Slater O; Kontoyianni M
    Expert Opin Drug Discov; 2019 Jul; 14(7):619-637. PubMed ID: 31025886
    [No Abstract]   [Full Text] [Related]  

  • 19. Iterated Virtual Screening-Assisted Antiviral and Enzyme Inhibition Assays Reveal the Discovery of Novel Promising Anti-SARS-CoV-2 with Dual Activity.
    Hamdy R; Fayed B; Mostafa A; Shama NMA; Mahmoud SH; Mehta CH; Nayak Y; M Soliman SS
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description.
    Spyrakis F; Cavasotto CN
    Arch Biochem Biophys; 2015 Oct; 583():105-19. PubMed ID: 26271444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.