These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37808314)

  • 21. Host cell depletion of tryptophan by IFNγ-induced Indoleamine 2,3-dioxygenase 1 (IDO1) inhibits lysosomal replication of Coxiella burnetii.
    Ganesan S; Roy CR
    PLoS Pathog; 2019 Aug; 15(8):e1007955. PubMed ID: 31461509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development.
    Martinez E; Allombert J; Cantet F; Lakhani A; Yandrapalli N; Neyret A; Norville IH; Favard C; Muriaux D; Bonazzi M
    Proc Natl Acad Sci U S A; 2016 Jun; 113(23):E3260-9. PubMed ID: 27226300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beginning to Understand the Role of the Type IV Secretion System Effector Proteins in Coxiella burnetii Pathogenesis.
    Lührmann A; Newton HJ; Bonazzi M
    Curr Top Microbiol Immunol; 2017; 413():243-268. PubMed ID: 29536362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Syntaxin 11 Contributes to the Interferon-Inducible Restriction of Coxiella burnetii Intracellular Infection.
    Ganesan S; Alvarez NN; Steiner S; Fowler KM; Corona AK; Roy CR
    mBio; 2023 Feb; 14(1):e0354522. PubMed ID: 36728431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction between autophagic vesicles and the Coxiella-containing vacuole requires CLTC (clathrin heavy chain).
    Latomanski EA; Newton HJ
    Autophagy; 2018; 14(10):1710-1725. PubMed ID: 29973118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth.
    Samanta D; Clemente TM; Schuler BE; Gilk SD
    PLoS Pathog; 2019 Dec; 15(12):e1007855. PubMed ID: 31869379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coxiella burnetii type IV secretion-dependent recruitment of macrophage autophagosomes.
    Winchell CG; Graham JG; Kurten RC; Voth DE
    Infect Immun; 2014 Jun; 82(6):2229-38. PubMed ID: 24643534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The
    Pechstein J; Schulze-Luehrmann J; Bisle S; Cantet F; Beare PA; Ölke M; Bonazzi M; Berens C; Lührmann A
    Front Cell Infect Microbiol; 2020; 10():559915. PubMed ID: 33282747
    [No Abstract]   [Full Text] [Related]  

  • 29. Perturbation of ATG16L1 function impairs the biogenesis of Salmonella and Coxiella replication vacuoles.
    Lau N; Thomas DR; Lee YW; Knodler LA; Newton HJ
    Mol Microbiol; 2022 Feb; 117(2):235-251. PubMed ID: 34874584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biogenesis of the Spacious
    Padmanabhan B; Fielden LF; Hachani A; Newton P; Thomas DR; Cho HJ; Khoo CA; Stojanovski D; Roy CR; Scott NE; Newton HJ
    Infect Immun; 2020 Feb; 88(3):. PubMed ID: 31818957
    [No Abstract]   [Full Text] [Related]  

  • 31. Coxiella burnetii encodes an LvgA-related protein important for intracellular replication.
    Steiner S; Meir A; Roy CR
    Cell Microbiol; 2021 Jun; 23(6):e13331. PubMed ID: 33774901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole.
    Newton HJ; McDonough JA; Roy CR
    PLoS One; 2013; 8(1):e54566. PubMed ID: 23349930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii.
    Voth DE; Heinzen RA
    Cell Microbiol; 2007 Apr; 9(4):829-40. PubMed ID: 17381428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Coxiella burnetii Dot/Icm system creates a comfortable home through lysosomal renovation.
    Newton HJ; Roy CR
    mBio; 2011; 2(5):. PubMed ID: 22010216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dependency of
    Larson CL; Beare PA; Heinzen RA
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Critical Role for Molecular Iron in Coxiella burnetii Replication and Viability.
    Sanchez SE; Omsland A
    mSphere; 2020 Jul; 5(4):. PubMed ID: 32699121
    [No Abstract]   [Full Text] [Related]  

  • 37. A Farnesylated Coxiella burnetii Effector Forms a Multimeric Complex at the Mitochondrial Outer Membrane during Infection.
    Fielden LF; Moffatt JH; Kang Y; Baker MJ; Khoo CA; Roy CR; Stojanovski D; Newton HJ
    Infect Immun; 2017 May; 85(5):. PubMed ID: 28242621
    [No Abstract]   [Full Text] [Related]  

  • 38. Lysosomal degradation products induce
    Newton P; Thomas DR; Reed SCO; Lau N; Xu B; Ong SY; Pasricha S; Madhamshettiwar PB; Edgington-Mitchell LE; Simpson KJ; Roy CR; Newton HJ
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6801-6810. PubMed ID: 32152125
    [No Abstract]   [Full Text] [Related]  

  • 39. Elevated Cholesterol in the
    Mulye M; Samanta D; Winfree S; Heinzen RA; Gilk SD
    mBio; 2017 Feb; 8(1):. PubMed ID: 28246364
    [No Abstract]   [Full Text] [Related]  

  • 40. Coxiella burnetii as a useful tool to investigate bacteria-friendly host cell compartments.
    Pechstein J; Schulze-Luehrmann J; Lührmann A
    Int J Med Microbiol; 2018 Jan; 308(1):77-83. PubMed ID: 28935173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.