BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37808584)

  • 1. Developing Electrospun Ethylcellulose Nanofibrous Webs: An Alternative Approach for Structuring Castor Oil.
    Borrego M; Martín-Alfonso JE; Valencia C; Sánchez Carrillo MDC; Franco JM
    ACS Appl Polym Mater; 2022 Oct; 4(10):7217-7227. PubMed ID: 37808584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Cellulose Triacetate Nanofibers as Sustainable Structuring Agent for Castor Oil: Formulation Design and Rheological Insights.
    Martín-Alfonso MA; Rubio-Valle JF; Estrada-Villegas GM; Sánchez-Domínguez M; Martín-Alfonso JE
    Gels; 2024 Mar; 10(4):. PubMed ID: 38667640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the Morphology of Electrospun Lignin/Ethylcellulose Nanostructures on Their Capacity to Thicken Castor Oil.
    Borrego M; Martín-Alfonso JE; Valencia C; Sánchez MC; Franco JM
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun lignin-PVP nanofibers and their ability for structuring oil.
    Borrego M; Martín-Alfonso JE; Sánchez MC; Valencia C; Franco JM
    Int J Biol Macromol; 2021 Jun; 180():212-221. PubMed ID: 33737178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the Tribological Performance of Electrospun Lignin Nanofibrous Web-Thickened Bio-Based Greases in a Nanotribometer.
    Borrego M; Kuhn E; Martín-Alfonso JE; Franco JM
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Vegetable Oil Type on the Rheological and Tribological Behavior of Montmorillonite-Based Oleogels.
    Martín-Alfonso MA; Rubio-Valle JF; Hinestroza JP; Martín-Alfonso JE
    Gels; 2022 Aug; 8(8):. PubMed ID: 36005105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrohydrodynamic Processing of PVP-Doped Kraft Lignin Micro- and Nano-Structures and Application of Electrospun Nanofiber Templates to Produce Oleogels.
    Rubio-Valle JF; Sánchez MC; Valencia C; Martín-Alfonso JE; Franco JM
    Polymers (Basel); 2021 Jul; 13(13):. PubMed ID: 34279350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicomponent Oleogels Prepared with High- and Low-Molecular-Weight Oleogelators: Ethylcellulose and Waxes.
    Wang Z; Chandrapala J; Truong T; Farahnaky A
    Foods; 2023 Aug; 12(16):. PubMed ID: 37628092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of solvent quality on the mechanical strength of ethylcellulose oleogels.
    Gravelle AJ; Davidovich-Pinhas M; Zetzl AK; Barbut S; Marangoni AG
    Carbohydr Polym; 2016 Jan; 135():169-79. PubMed ID: 26453865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioethanol lignin-rich residue from olive stones for electrospun nanostructures development and castor oil structuring.
    Rubio-Valle JF; Martín-Alfonso JE; Eugenio ME; Ibarra D; Oliva JM; Manzanares P; Valencia C
    Int J Biol Macromol; 2024 Jan; 255():128042. PubMed ID: 37977476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethylcellulose Oleogels: Structure, Functionality, and Food Applications.
    Gravelle AJ; Marangoni AG
    Adv Food Nutr Res; 2018; 84():1-56. PubMed ID: 29555066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structuring of oils with high PUFA content: Evaluation of the formulation conditions on the oxidative stability and structural properties of ethylcellulose oleogels.
    Millao S; Iturra N; Contardo I; Morales E; Quilaqueo M; Rubilar M
    Food Chem; 2023 Mar; 405(Pt A):134772. PubMed ID: 36335726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheology and Tribology of Ethylcellulose-Based Oleogels and W/O Emulsions as Fat Substitutes: Role of Glycerol Monostearate.
    Zhang R; Zhang Y; Yu J; Gao Y; Mao L
    Foods; 2022 Aug; 11(15):. PubMed ID: 35954132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters.
    Zetzl AK; Marangoni AG; Barbut S
    Food Funct; 2012 Mar; 3(3):327-37. PubMed ID: 22377795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological properties of ethyl cellulose-monoglyceride-candelilla wax oleogel vis-a-vis edible shortenings.
    Rodríguez-Hernández AK; Pérez-Martínez JD; Gallegos-Infante JA; Toro-Vazquez JF; Ornelas-Paz JJ
    Carbohydr Polym; 2021 Jan; 252():117171. PubMed ID: 33183620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of vegetable oil and ethylcellulose on the oleogel properties and its application in Harbin red sausage.
    Shao L; Bi J; Li X; Dai R
    Int J Biol Macromol; 2023 Jun; 239():124299. PubMed ID: 37011742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation of ethylcellulose oleogels during setting.
    Gravelle AJ; Barbut S; Marangoni AG
    Food Funct; 2013 Jan; 4(1):153-61. PubMed ID: 23165763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of PVA Molecular Weight and Concentration on Electrospinnability of Birch Bark Extract-Loaded Nanofibrous Scaffolds Intended for Enhanced Wound Healing.
    Mwiiri FK; Daniels R
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33086645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring Natural-Based Oleogels Combining Ethylcellulose and Virgin Coconut Oil.
    Silva SS; Rodrigues LC; Fernandes EM; Lobo FCM; Gomes JM; Reis RL
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35746048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospinning of Octenylsuccinylated Starch-Pullulan Nanofibers from Aqueous Dispersions.
    Li S; Kong L; Ziegler GR
    Carbohydr Polym; 2021 Apr; 258():116933. PubMed ID: 33593528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.