These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37808969)

  • 1. Task-based assessment of digital mammography microcalcification detection with deep learning denoising algorithmss using
    Makeev A; Glick SJ
    J Med Imaging (Bellingham); 2023 Sep; 10(5):053502. PubMed ID: 37808969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning denoising of digital breast tomosynthesis: Observer performance study of the effect on detection of microcalcifications in breast phantom images.
    Chan HP; Helvie MA; Gao M; Hadjiiski L; Zhou C; Garver K; Klein KA; McLaughlin C; Oudsema R; Rahman WT; Roubidoux MA
    Med Phys; 2023 Oct; 50(10):6177-6189. PubMed ID: 37145996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Convolutional Neural Network With Adversarial Training for Denoising Digital Breast Tomosynthesis Images.
    Gao M; Fessler JA; Chan HP
    IEEE Trans Med Imaging; 2021 Jul; 40(7):1805-1816. PubMed ID: 33729933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose reduction and image enhancement in micro-CT using deep learning.
    Muller FM; Maebe J; Vanhove C; Vandenberghe S
    Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing the risk of hallucinations with interpretable deep learning models for low-dose CT denoising: comparative performance analysis.
    Patwari M; Gutjahr R; Marcus R; Thali Y; Calvarons AF; Raupach R; Maier A
    Phys Med Biol; 2023 Oct; 68(19):. PubMed ID: 37733068
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparison of the Detection Rate of Simulated Microcalcifications in Full-Field Digital Mammography, Digital Breast Tomosynthesis, and Synthetically Reconstructed 2-Dimensional Images Performed With 2 Different Digital X-ray Mammography Systems.
    Peters S; Hellmich M; Stork A; Kemper J; Grinstein O; Püsken M; Stahlhut L; Kinner S; Maintz D; Krug KB
    Invest Radiol; 2017 Apr; 52(4):206-215. PubMed ID: 27861206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.
    Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K
    Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring CNN potential in discriminating benign and malignant calcifications in conventional and dual-energy FFDM: simulations and experimental observations.
    Makeev A; Rodal G; Ghammraoui B; Badal A; Glick SJ
    J Med Imaging (Bellingham); 2021 May; 8(3):033501. PubMed ID: 34002162
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: a simulation study with an anthropomorphic breast phantom.
    Liu X; Lai CJ; Whitman GJ; Geiser WR; Shen Y; Yi Y; Shaw CC
    Med Phys; 2011 Dec; 38(12):6489-501. PubMed ID: 22149832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A four-alternative forced choice (4AFC) methodology for evaluating microcalcification detection in clinical full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) systems using an inkjet-printed anthropomorphic phantom.
    Ikejimba LC; Salad J; Graff CG; Ghammraoui B; Cheng WC; Lo JY; Glick SJ
    Med Phys; 2019 Sep; 46(9):3883-3892. PubMed ID: 31135960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual and quantitative evaluation of microcalcifications in mammograms with deep learning-based super-resolution.
    Honjo T; Ueda D; Katayama Y; Shimazaki A; Jogo A; Kageyama K; Murai K; Tatekawa H; Fukumoto S; Yamamoto A; Miki Y
    Eur J Radiol; 2022 Sep; 154():110433. PubMed ID: 35834858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography.
    Shan H; Vimieiro RB; Borges LR; Vieira MAC; Wang G
    Artif Intell Med; 2023 Aug; 142():102555. PubMed ID: 37316093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model observer study using acquired mammographic images of an anthropomorphic breast phantom.
    Balta C; Bouwman RW; Sechopoulos I; Broeders MJM; Karssemeijer N; van Engen RE; Veldkamp WJH
    Med Phys; 2018 Feb; 45(2):655-665. PubMed ID: 29193129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning.
    Wang J; Tang Y; Wu Z; Tsui BMW; Chen W; Yang X; Zheng J; Li M
    Med Phys; 2023 Jan; 50(1):74-88. PubMed ID: 36018732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcalcifications Detected at Screening Mammography: Synthetic Mammography and Digital Breast Tomosynthesis versus Digital Mammography.
    Lai YC; Ray KM; Lee AY; Hayward JH; Freimanis RI; Lobach IV; Joe BN
    Radiology; 2018 Dec; 289(3):630-638. PubMed ID: 30277445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of task-based performance from five clinical DBT systems using an anthropomorphic breast phantom.
    Ikejimba LC; Salad J; Graff CG; Goodsitt M; Chan HP; Huang H; Zhao W; Ghammraoui B; Lo JY; Glick SJ
    Med Phys; 2021 Mar; 48(3):1026-1038. PubMed ID: 33128288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis.
    Shaheen E; Van Ongeval C; Zanca F; Cockmartin L; Marshall N; Jacobs J; Young KC; R Dance D; Bosmans H
    Med Phys; 2011 Dec; 38(12):6659-71. PubMed ID: 22149848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.